
Specification and verification of
agent interaction protocols

WOA 2005

Alberto Martelli
Dipartimento di Informatica

Università di Torino

WOA 2005 2

COFIN

Sviluppo e verifica di sistemi multiagente basati sulla logica
(MASSIVE)

20/11/2003 – 20/11/2005

Coordinatore: Alberto Martelli

Partecipanti:

Alessandria: Laura Giordano

Bologna: Paola Mello

Torino: Alberto Martelli

WOA 2005 3

Obiettivo della ricerca:

individuare formalismi, strumenti e tecniche per modellare,
sviluppare e analizzare sistemi ad agenti.

• Modellare la dinamica interna al singolo agente, con le sue
credenze, i suoi obiettivi le sue capacità di ragionamento.

• Modellare la dinamica dell'interazione e delle comunicazione fra
agenti in un ambiente che evolve dinamicamente.

WOA 2005 4

L'attività di ricerca ha riguardato principalmente:

1. Modelli formali di sistemi ad agente

Sono state studiate tecniche basate sulla logica computazionale per la
descrizione del comportamento individuale e collettivo di agenti che
interagiscono in società aperte. E' stato definito un modello di società
basato su logica computazionale nel quale ogni protocollo di
interazione può essere definito da un insieme di vincoli logici
abduttivi.

E' stata proposta una teoria delle azioni basata sulla logica DLTL per
modellare la comunicazione tra agenti. La logica DLTL combina la
logica temporale "linear time" con la logica dinamica, usata per
modellare azioni complesse (programmi regolari).

WOA 2005 5

2. Linguaggi di specifica basati sulla logica computazionale

Al formalismo per modellare società aperte è stata associata una
controparte operazionale, ottenuta come estensione della procedura
logica abduttiva IIF(Fung e Kowalski) che consente la verifica delle
interazioni fra agenti della società.

E' stata completata la definizione di un linguaggio di
programmazione logica per ragionare su azioni, DyLOG, basato su
un approccio modale, estendendo il linguaggio con azioni
comunicative.

E' stata studiata l'integrazione di DyLOG con l'ambiente di
prototipazione DcaseLP.

WOA 2005 6

3. Verifica

Sono stati affrontati diversi problemi di verifica di proprietà di
agenti e di protocolli di comunicazione, mediante i formalismi citati
nei punti precedenti.

I problemi considerati riguardano: proprietà di protocolli,
comportamento corretto di agenti comunicanti, correttezza
dell'implementazione di un singolo agente, interoperabilità di un
insieme di agenti.

Le soluzioni proposte utilizzano varie tecniche, come il
ragionamento abduttivo o il model checking.

WOA 2005 7

Le attività di ricerca nell'ultima fase del progetto si sono orientate
principalmente verso le problematiche relative alla specifica
formale e verifica di proprietà di protocolli, prendendo in
considerazione settori applicativi come le linee guida mediche o i
servizi web.

Nel seguito verrà dato un inquadramento generale delle
problematiche della specifica e verifica di protocolli di
comunicazione fra agenti.

Gli approcci specifici adottati nel progetto verranno descritti negli
interventi seguenti.

WOA 2005 8

Multi-agent systems

A multiagent system contains a number of agents which interact
with one another through communication.

Multiagent environments have the following characteristics:

• they provide an infrastructure specifying communication and
interaction protocols;

• they are typically open and have no centralized designer;

• they contain agents which are autonomous and distributed,
and may be self-interested or cooperative.

Agents communicate in order to better achieve the goals of
themselves or of the society/system in which they exist.

WOA 2005 9

Agent Communication Languages (ACL)
An ACL provides agents with a means of exchanging information
and knowledge.

ACLs stand usually at a higher level with respect to the
communication tools of distributed systems, such as remote
procedure call or method invocation.

ACLs handle propositions, rules, and actions instead of simple
objects

An ACL message describes a desired state in a declarative language,
often in terms of mental attitudes.

WOA 2005 10

KQML
Knowledge Query and Manipulation Language

KQML is a high-level communication language independent of:
•the transport mechanism (tcp/ip, RMI, …)
•the content language (KIF, Prolog, …)
•the ontology

A KQML message specifies the type of message (performative)

KQML ignores the content portion of a message.

WOA 2005 11

KQML messages

The syntax of a KQML message is based on Lisp-like lists, and
consists of a performative followed by a number of keyword/value
pairs (syntax is not important).

Example (a query from Joe about the price of a share of IBM):

(ask-one performative
:sender joe
:receiver stock-server
:reply-with ibm-stock
:language LPROLOG the representation language of the content
:content (PRICE IBM ?price)
:ontology NYSE-TICKS

)

WOA 2005 12

Some KQML performatives
achieve S wants R to make something true

advertise S claims to be suited to processing a performative

ask-one S wants one of R's answers to question C

ask-all S wants all of R's answers to question C

reply communicates an expected reply

sorry S cannot provide a more informative reply

tell S informs R that it knows C

S: sender R: receiver C: content

WOA 2005 13

FIPA ACL

The Foundation for Intelligent Physical Agents (FIPA) was formed
in 1996 to produce software standards for heterogeneous and
interacting agents and agent-based systems.

FIPA operates through the open international collaboration of
member organizations, companies, research centers and
universities.

Among other specifications, FIPA has defined an agent
communication language similar to KQML.

FIPA ACL provides 22 communicative acts, like inform, request,
agree, query-if, …

WOA 2005 14

The syntax for FIPA ACL messages closely resembles that of
KQML:

(inform
:sender agent1
:receiver agent2
:language Prolog
:content "weather(today, raining)"

)

However the semantics of the two languages are rather different.

FIPA ACL does not include the facilitation primitives of
KQML.

WOA 2005 15

Semantics of speech acts

Speech acts can be considered as actions.

They can be modeled by using techniques for reasoning about
actions and change developed in AI, in particular in planning
research.

The usual approach is to describe an action by means of its
preconditions and effects.

WOA 2005 16

Modeling speech acts
Cohen and Perrault gave an account of the semantics of speech acts
by using techniques developed in AI planning research. In
particular they used a STRIPS-like notation, by means of
preconditions and effects of actions on a mental state.

Request(S, H, α)

Preconditions: (S BELIEVE (H CANDO α)) ∧
(S BELIEVE (H BELIEVE (H CANDO α)))

Effects: (H BELIEVE (S BELIEVE (S WANT α)))

Successful completion of the Request ensures that the hearer is
aware of the speaker's desires, but does not guarantee that action α
will actually be performed.

WOA 2005 17

Semantics of KQML

Initially KQML had no formal semantics.

A semantics was provided later on by Labrou and Finin in terms of
preconditions, postconditions, and completion conditions.

Given a sender A and a receiver B, preconditions indicate the
necessary state for A to send a performative, Pre(A), and for B to
accept and successfully process it, Pre(B).

Postconditions describe the states of A after utterance of a
performative, Post(A), and of B after receipt of a message, Post(B).

A completion condition for a performative indicates the final state,
after, for example, a conversation has taken place.

WOA 2005 18

Preconditions, postconditions and completion conditions describe
states of agents in a language of mental attitudes (belief,
knowledge, desire, and intention) and action descriptions (for
sending and processing a message).

No semantic models for the mental attitudes are provided.

WOA 2005 19

Semantics of tell(A, B, X)

Pre(A): BEL(A, X) ∧ KNOW(A, WANT(B, KNOW(B,S)))

Pre(B): INT(B, KNOW(B, S))

where S may be any of BEL(B, X) or ¬BEL(B, X)

Post(A): KNOW(A, KNOW(B, BEL(A, X)))

Post(B): KNOW(B, BEL(A, X))

Completion: KNOW(B, BEL(A, X))

An agent cannot offer unsolicited information. A proactive tell
might have Pre(A): BEL(A, X) and empty Pre(B).

WOA 2005 20

Semantics of FIPA ACL
The Semantic Language (SL) is the formal language used to define
FIPA ACL's semantics. It is mainly due to Sadek.

SL is a quantified multimodal logic with modal operators:

•Biϕ i believes that ϕ
•Uiϕ i is uncertain about ϕ but thinks that ϕ is more likely than ¬ϕ

•Ciϕ i desires (choice, goal) that ϕ currently holds

To enable reasoning about actions, the universe of discourse
involves sequences of events (actions).

WOA 2005 21

The following operators are introduced for reasoning about actions:
•Feasible(a, ϕ) a can take place and if it does ϕ will be true after that
•Done(a, ϕ) a has just taken place and ϕ was true just before that
•Agent(i, a) i is the only agent that ever performs action a

From belief, choice and events, the concept of persistent goal PGiϕ
can be defined. Intention Iiϕ is defined as a persistent goal imposing
the agent to act.

The semantics of a communicative act is specified as sets of SL
formulas that describe the act's feasibility preconditions and
rational effects.

WOA 2005 22

Feasibility preconditions (FP): conditions that must hold for the
sender to properly perform the communicative act

Rational effects (RE): the effects that an agent can expect to
occur as a result of performing the action (the reasons for which
the act is selected). The receiving agent is not required to ensure
that the expected effect comes about.

Conformance with the FIPA ACL means that when agent A sends
communicative act c, the FP(c) for A must hold. The
unguaranteed RE(c) is irrelevant to the conformance issue.

WOA 2005 23

<i, INFORM(j, ϕ)>

FP: Biϕ ∧ ¬Bi(Bifjϕ ∨ Uifjϕ)
RE: Bjϕ

FP means that i must believe ϕ, and i must not believe that j
already knows ϕ or ¬ϕ, or j is uncertain about ϕ or ¬ϕ.

<i, REQUEST(j, a)>
FP: FP(a)[i\j] ∧ Bi Agent(j,a) ∧ Bi ¬PGj Done(a)
RE: Done(a)

where FP(a)[i\j] denotes the part of the FPs of a which are mental
attitudes of i.

WOA 2005 24

Most of the other communicative actions are derived from INFORM
and REQUEST. For instance:
<i, QUERY-IF(j, ϕ)> ≝

<i, REQUEST(j, <j, INFORM-IF(i, ϕ)>)>

<i, INFORM-IF(j, ϕ)> ≝
<i, INFORM(j, ϕ)> | <i, INFORM(j, ¬ϕ)>

WOA 2005 25

Social semantics
The above semantic definitions constitute the mental approach,
because they define semantics of speech acts in terms of the mental
states of participants. Using mental states to define speech acts may
be adequate on cooperative multiagent systems, but presents some
problems when the multiagent system is composed of competitive,
heterogeneous agents. In this case it is impossible to trust other
agents completely or to make strong assumptions about their
internal way of reasoning.

The social approach, instead, considers the social consequences of
performing speech acts. The approach recognizes that
communication is inherently public, and thus depends on the
agent's social context.

WOA 2005 26

This approach is based on commitments between agents: an agent
(the debtor) is committed to another agent (the creditor) to make
some fact true or to carry out some action.

According to the social approach, the various speech acts can be
seen in terms of the social commitments the participants are
entering. This is obvious for an act like a promise, where a
commitment is explicitly made, but holds also for other speech acts.
For instance, in an assertion, the speaker is committed to the truth of
the proposition.

Using the mental approach it is very difficult to verify the
compliance of an agent with the semantics of speech acts. How can
we show that an agent believes what it says if it is not a BDI agent?

Communication in the social approach is inherently public.

WOA 2005 27

Singh was probably the first to clearly emphasize the need to define
the semantics of ACLs in terms of "social notions". He proposed a
social semantics based on the views of the philosopher Habermas.

He proposed three level of semantics for each act. For instance, by
informing j that p, i gets committed towards j that p holds
(objective claim), that he believes that p (subjective claim), and that
ha has reasons to believe p (practical claim). Singh admits the
mentalistic approach at the subjective level, but embedded within a
social attitude (the claims that leads to a commitment).

Technically, the semantics of commitments is expressed in a
branching-time logic (CTL).

WOA 2005 28

Colombetti has proposed an approach in the same vein as Singh.

There can be various types of commitments:

C(a, b, p) a is committed to b that p (p can be a fact or an action)

CC(a, b, p, q) conditional commitment: if q holds then C(a, b, p)

PC(a, b, p) precommitment: is a kind of conditional commitment
(e.g. a request pre-commits the agent to which it is addressed,
meaning that this agent will be committed in case of acceptance).

For instance, execution of the communicative action

inform(a, b, p)

creates a commitment CC(a, b, p)

WOA 2005 29

Execution of

request(a, b, p)

creates a precommitment PC(b, a, p)

If b replies with an accept, the precommitment is transformed in
an active commitment,

if b replies with reject, the precommitment is cancelled.

WOA 2005 30

To summarize:

Communicative actions can be modeled by means of preconditions
and effects on a state.

The state can be a mental state, defined in terms of BDI attitudes,
or a social state, defined in terms of commitments and social facts.

Formalization of speech acts requires the use of time (temporal
logics or temporal constraints). In fact, the semantics of both
mental attitudes and commitments refers to time (eventually the
intention will be satisfied, eventually the commitment will be
fulfilled).

Social semantics is more suitable for verifying compliance with
the semantics in the case of open systems, where internal states of
agents are inaccessible.

WOA 2005 31

Protocols
Agents cannot take part in a dialogue simply by exchanging ACL
messages.

Analysis of many human conversations shows that there is often a
pattern which frequently occurring conversations follow
(example, phone calls).

The mentalistic semantics of communicative acts is too complex
to determine the possible answer to a message by just reasoning
on mental states.

An agent must implement tractable decision procedures that allow
it to select and produce ACL messages that are appropriate to its
intentions: conversation policies or protocols.

WOA 2005 32

Protocol specification

Usually protocols are modeled as finite state machines.

Request for action protocol

WOA 2005 33

Other formalisms have been proposed for protocol specification:

Petri nets

Definite Clause Grammars (DCG): have been used by Labrou
and Fining for KQML protocol specification. DCGs are extensions
of Context Free Grammars where non-terminals may be compound
terms, and the body of a rule may contain procedural attachments.

AUML: FIPA specifications define protocols by means of AUML,
an extension of UML for agents.

WOA 2005 34

WOA 2005 35

Contract Net protocol
Many protocols have been defined for cooperation among agents.

The best known and most widely applied is the Contract Net
Protocol: an interaction protocol for cooperative problem solving
among agents. It is modeled on the contracting mechanism used by
business to govern the exchange of goods and services.

An agent wanting a task to be solved is called the manager; agents
that might be able to solve the task are called potential contractors.

From a manager's perspective:
•Announce a task that needs to be performed
•Receive and evaluate bids from potential contractors
•Award a contract to a suitable contractor
•Receive and synthesize results

WOA 2005 36

From a contractor's perspective:
•Receive task announcements
•Evaluate my capabilities to respond
•Respond (decline, bid)
•Perform the task if my bid is accepted
•Report my results

A contractor for a specific task may act as a manager by
soliciting the help of other agents in solving parts of that ask.

An expiration time gives a deadline for receiving bids.

WOA 2005 37

WOA 2005 38

Protocols in the social approach
According to Singh, protocols can be specified as sets of
commitments rather than as finite state machines.

Agents play different roles within a society, and the roles define the
associate social commitments or obligations to other roles. For
instance, A will honor a price quote, provided B responds within a
specified period.

In general, agents can operate on their commitments by
manipulating or canceling them.

Because protocol requirements would be expressed solely in terms
of commitments, agents could be tested for compliance on the basis
of their communications (it is not necessary to know the
implementation).

WOA 2005 39

Rigid vs. freeform protocols

Rigid protocols define a set of pre-designed sequences of actions
in a conversation. They specify which actions are allowed in each
state of the conversation.

Freeform protocols give the agents more freedom in choosing
their actions. The protocol does not specify the precise action that
must be executed at each step, but rather the effect which must be
achieved. For instance, in a social approach, all commitments must
be fulfilled by the end of the protocol.

WOA 2005 40

An example: The NetBill protocol
We consider a simplified form of the NetBill protocol developed for
buying and selling goods on the Internet.

Consumer Merchant

Request quote for some goods

Send quote

Accept quote
Deliver goods

Send electronic payment order (EPO)

Send receipt

WOA 2005 41

This protocol can be executed in many different ways.

For instance, the merchant may send a quote before the customer
asks for it, to advertise his goods,

or the merchant wants to send the goods without a prior acceptance
of the customer, similar to the trial version of software products
which lasts a certain period of time.

Due to this flexibility, the standard approaches to protocol
representation, e.g. finite state automata, are inadequate.

WOA 2005 42

Protocol specifications

Many issues are involved in the specification of protocol:

1. Adopt a formalism which allows more flexibility than finite
state machines (take into account also the semantics of
communicative actions)

2. Consider unexpected (or exceptional) messages within the
protocol

3. Specify protocols at a high level of abstraction

4. Adopt a declarative approach

5. Provide formal properties of the protocol proposed.

WOA 2005 43

Multiagent systems verification
Several different types of verification are possible, depending on the
type of ACL (mental or social language), the information available
(internal state, external state, language specification) and whether we
wish to verify at design time or at run time.

Design time verification is important when we want to prove some
properties to guarantee certain behaviors or outcomes of the system.

Run time verification is used to determine if agents are misbehaving
in a certain run of the system. It is important in an open system
because it may be the only way to identify rogue agents.

WOA 2005 44

Verification in open systems

The following types of verification are useful in an open system:

1. Verify that an agent will always satisfy its social facts

Suppose we are using a social language and we have access to
the agent's program code, with its internal states. We can verify
at design time that the agent will always respect its social
commitments, regardless of what other agents will do. To do
this we have to prove that, for all computations of the system,
social facts that are true for agent i (e.g. commitments) will be
satisfied.

WOA 2005 45

2. Interoperability

Verify that a set of agents will interact correctly according to a
given protocol. This requires to check compliance of each agent
with the protocol.

WOA 2005 46

3. Prove a property of a protocol

In this case we do not know the internals of the agents. We will
reason on all possible observable sequences of states, by
assuming that all agents are compliant.

4. Determine if an agent is not respecting its social facts at
runtime

In this case we will reason on an observable history of
messages exchanged by one agent or by the entire system. With
this information it may be possible to determine if agents have
complied with the ACL thus far, but not to determine if they
will comply in the future.

WOA 2005 47

Approaches to verification
Guerin and Pitt have proposed a general agent communication
framework within which several notions of verification can be
investigated. Informally, the framework consists of:

An agent programming language: allowing to program sets of agent
which communicate via message passing. Agents have an internal
state, which can model the mental state of the agent.

Social state: describes all publicly observable phenomena including
propositions representing social facts (commitments), control
variables (roles), the rules governing interaction and the history of
transmitted messages.

An Agent Communication Language, whose semantics accounts
both for the mental part and the social part.

WOA 2005 48

Event calculus
Yolum and Singh proposed an approach based on event calculus, a
formalism to reason about events (actions). Events can initiate or
terminate fluents, and time appears explicitly in event calculus
formulas.

Some of the predicates for reasoning about events are:

Initiates(a, f, t) fluent f holds after event a at time t

Terminates(a, f, t) fluent f does not hold after event a at time t

Initially(f) fluent f holds from time 0

Happens(a, t) event a happens at time t

HoldsAt(f, t) fluent f holds at time t

WOA 2005 49

Commitments are represented as fluents. There are

base-level commitments C(x, y, p)

conditional commitments CC(x, y, p, q): if condition p is brought
out, x will be committed to y to bring about q.

Some rules can be defined to reason about commitments. For
instance

Terminates(e, C(x, y, p), t) ←
HoldsAt(C(x, y, p), t) ∧ Happens(e, t) ∧ Initiates(e, p, t)

(A commitment is no longer in force if the condition committed to holds)

Initiates(e, C(x, y, q), t) ∧ Terminates(e, CC(x, y, p, q), t) ←
HoldsAt(CC(x, y, p, q), t) ∧ Happens(e, t) ∧ Initiates(e, p, t)

(A conditional commitment is transformed into a base-level commitment)

WOA 2005 50

For the NetBill protocol, let MR be the merchant and CT the
customer.

Some fluents are:
request(i): the customer has requested a quote for item i
goods(i): the merchant has delivered the goods i
pay(m): the customer has paid the amount m

Some abbreviations for commitments:

accept(i, m) ≡ CC(CT, MR, goods(i), pay(m))
the customer is willing to pay if he receives the goods

promiseGoods(i, m) ≡ CC(MR, CT, accept(i, m), goods(i))
the merchant is willing to send the goods if the customer
promises to pay the agreed amount

WOA 2005 51

Protocols are specified by a set of Initiates and Terminates
clauses. For instance:

Initiates (sendQuote(i, m), promiseGoods(i, m), t)
Initiates(sendAccept(i, m), accept(i, m), t)
Initiates(sendGoods(i), goods(i), t)

remember:
accept(i, m) ≡ CC(CT, MR, goods(i), pay(m))
promiseGoods(i, m) ≡ CC(MR, CT, accept(i, m), goods(i))

sendQuote(i,m) sendAccept(i,m) sendGoods(i)

promiseGoods(i,m)
accept(i, m)
C(MR,CT,goods(i))

goods(i)
C(CT,MR,pay(m))

WOA 2005 52

Yolum and Singh show how to reason about protocols in their
event calculus approach. Using an event calculus planner, they
can generate complete protocol runs, i.e. sequences of actions of
the protocol such that there are no pending base-level
commitments.

WOA 2005 53

Within MASSIVE we have investigated different approaches to
protocol verification:

A model of agent society based on computational logic, where
interaction protocols can be described by a set of integrity
constraints.

An approach based on the logic DLTL, where communicative
actions are modeled by means of preconditions and effects on the
social state, and protocols can be described by means of rules
defining permissions to execute actions, and commitment
fulfillment.

The problem of interoperability has been studied for protocols
expressed by finite state automata.

WOA 2005 54

Integrity constraints
A model of agent interaction based on social integrity constraints.
Social integrity constraints are used to model protocols.

The multiagent system records in a "history" file the observable
events for the society: H(e), event e happened.

A course of events might give rise to social expectations about the
future behavior of the agents: E(e) (event e is expected to happen)
or NE(e) (event e is expected not to happen).

Integrity constraints link events and expectations. For instance:

H(tell(x,y,start)) → E(pass(y))

if x told y "start", then we expect a social event pass(y).

WOA 2005 55

Expectations can be used to represent commitments. In the NetBill:

H(sendQuote(m,i,tq)) ∧ H(sendAccept(m,i,ta)) ∧ tq < ta →

E(sendGoods(i,tg)) : tg ≤ ta + τ

where the last argument of actions represents time.

If the merchant has sent a quote and the customer has accepted, the
merchant is committed to send the goods with a maximum delay τ.

Backward expectations allow to express preconditions:

H(sendReceipt(m,i,tr)) → E(sendEPO(i,tg)) : tg < tr

If the merchant sends a receipt and the customer has not sent an
EPO before, the constraint will be violated.

WOA 2005 56

In this framework it is possible to determine if some agent is not
respecting its social facts at runtime, by checking compliance of
the "history" of observable events with the specifications.

It is also possible to verify compliance of agents to protocols, for
a restricted class of programs and protocols, by specifying both
agents and protocols in terms of integrity constraints.

WOA 2005 57

Dynamic linear time logic

DLTL combines linear time logic with dynamic logic, by indexing
the until operator with regular programs of dynamic logic. It can be
used to reason about composite actions (programs) and to express
temporal properties.

Given an alphabet Σ of primitive actions, formulas of DLTL are:

p | ¬α | α ∨ β | α Uπ β

where π is a program over Σ.

WOA 2005 58

Protocols are formulated as sets of action laws, specifying effects of
actions. For instance:

[sendQuote(i, m)] promiseGoods(i, m)
[sendAccept(i, m)] accept(i, m)

WOA 2005 59

The protocol can specify constraints (permissions) on the execution
of actions by giving preconditions to the actions:

(¬paid → [sendReceipt] ⊥) if the payment has not been done,
sendReceipt cannot be executed
by the merchant.

An agent i satisfies its commitments when, for all commitments
C(i, j, a) in which agent i is the debtor, the formula

i(C(i, j, a) → i〈a〉i ⊺)

holds. When an agent is committed to execute action a, then it
must eventually execute a.

WOA 2005 60

Reasoning about protocols in DLTL

The verification problems mentioned before can be formulated as
satisfiability or validity of DLTL formulas.

Since the logic allows to formulate programs, it is also possible to
prove properties regarding compliance of an agent program with a
given protocol.

In some cases it is necessary to reason simultaneously on the
behavior of more than one agent. This requires to use the product
version of DLTL.

WOA 2005 61

Model checking
One particularly successful approach to the verification of
concurrent systems is model checking. This approach can be used
for verifying multiagent systems.

Model checking is a semantic approach: given a model M in a
given logic L, and a formula ϕ of L, determine whether or not ϕ is
valid in M.

In particular, practical model checking techniques are based on
temporal logics and on the close relationships between models for
temporal logic and finite-state machines describing computations.

WOA 2005 62

Given a (concurrent) program π and a temporal logic formula ϕ
(describing a specification or property), to show that ϕ holds for
program π, we proceed as follows:

• take π and generate from it a Kripke structure Mπ. A Kripke
structure consists of a set of states, a set of transitions between
states, and a function that labels each state with a set of
propositions that are true in that state. Paths in a Kripke structure
model computations of π;

• show that Mπ is a model of ϕ, i.e. that Mπ ⊨ϕ.

WOA 2005 63

If ϕ is an LTL (linear time temporal logic) formula, model checking
can be performed using automata. The advantage of this approach is
that both the modeled system and the specification are represented
in the same way.

In fact, given an LTL formula ϕ, we can construct a Büchi
automaton Bϕ such that the language L(Bϕ) accepted by Bϕ is non-
empty iff ϕ is satisfiable. Furthermore it is easy to build an
automaton Bπ which directly corresponds to Mπ.

WOA 2005 64

This formulation suggest the following model checking
procedure:

• Construct the two automata Bπ and B¬ϕ.

• Construct the automaton which accepts the intersection of
the languages L(Bπ) and L(B¬ϕ) (the product of the two
automata).

• If the intersection is empty, then ϕ holds for π, otherwise a
run in the intersection provides a counterexample.

In general this problem is PSPACE-complete, but efficient
techniques have been proposed and implemented.

WOA 2005 65

Model checking for ACL compliance
Wooldridge et al. have developed an approach to the verification of
properties of multi-agent systems using model checking, based on
the language MABLE.

MABLE is essentially a conventional imperative programming
language, enriched by constructs from the agent-oriented
programming paradigm. Agents in MABLE have a mental state
consisting of beliefs, desires and intentions, and communicate using
FIPA-like performatives.

MABLE systems may be augmented by addition of formal claims
about the system. Claims are expressed using a (simplified) version
of the BDI logic LORA, called MORA.

The MABLE language has been implemented by making use of
SPIN, a freely available model-checking system based on LTL.

WOA 2005 66

MABLE has been used to verify ACL compliance.

Communication is realized by means of send and receive
instructions:

send(inform agent2 of (a ==10))

Programmers can define their own semantics for communicative
acts, separately from a program, and then verify the compliance of
the program with the semantics. The semantics is expressed in a
STRIPS-style pre/post-conditions formalism. for instance:

inform(i, j, ϕ)
Pre: (Bel i ϕ) (if i is sincere)
Post: (Bel j (Int i (Bel j ϕ)))

WOA 2005 67

The following LORA formula expresses the property that an inform
performative satisfies its preconditions:

A (Happens inform(i, j, ϕ)) ⇒ (Bel i ϕ)

i.e. whenever agent i sends an inform message to agent j with
content ϕ, then i believes ϕ (i is sincere).

This formula can be expressed as a MABLE claim, and added to the
MABLE program describing the multi-agent system we want to
verify.

The same approach can be used to verify rational effects, e.g.

A (Happens inform(i, j, ϕ)) ⇒ ◊ (Bel j ϕ)

WOA 2005 68

Within MASSIVE we have experimented the use of model
checking for proving protocol properties.

In particular in the approach based on DLTL, it is possible to
carry out the above proofs using model checking techniques, by
extracting a model from the formulas expressing the domain
descriptions (action laws), and then checking the other formulas
on it.

An efficient technique for obtaining Büchi automata from DLTL
formulas has been developed, by extending the construction
defined for LTL.

Experiments have been done using the model checker SPIN,
based on LTL.

WOA 2005 69

Recent research activities within MASSIVE, and future work, aim
at exploiting the techniques and tools developed in the project in
various application areas, such as:

Medical guidelines

Web services

A further research topic regards the translation of languages
which have been proposed for specifying interaction protocols, in
particular graphical languages, into the formalisms developed in
the project, to give a formal semantics to those languages.

