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Obiettivo della ricerca:

individuare formalismi, strumenti e tecniche per modellare, 
sviluppare e analizzare sistemi ad agenti.

• Modellare la dinamica interna al singolo agente, con le sue 
credenze, i suoi obiettivi  le sue capacità di ragionamento.

• Modellare la dinamica dell'interazione e delle comunicazione fra 
agenti in un ambiente che evolve dinamicamente.
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L'attività di ricerca ha riguardato principalmente:

1. Modelli formali di sistemi ad agente

Sono state studiate tecniche basate sulla logica computazionale per la 
descrizione del comportamento individuale e collettivo di agenti che 
interagiscono in società aperte. E' stato definito un modello di società
basato su logica computazionale nel quale ogni protocollo di 
interazione può essere definito da un insieme di vincoli logici 
abduttivi.

E' stata proposta una teoria delle azioni basata sulla logica DLTL per 
modellare la comunicazione tra agenti. La logica DLTL combina la
logica temporale "linear time" con la logica dinamica, usata per 
modellare azioni complesse (programmi regolari).
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2. Linguaggi di specifica basati sulla logica computazionale

Al formalismo per modellare società aperte è stata associata una 
controparte operazionale, ottenuta come estensione della procedura 
logica abduttiva IIF(Fung e Kowalski) che consente la verifica delle 
interazioni fra agenti della società.

E' stata completata la definizione di un linguaggio di 
programmazione logica per ragionare su azioni, DyLOG, basato su 
un approccio modale, estendendo il linguaggio con azioni 
comunicative.

E' stata studiata l'integrazione di DyLOG con l'ambiente di 
prototipazione DcaseLP.
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3. Verifica

Sono stati affrontati diversi problemi di verifica di proprietà di 
agenti e di protocolli di comunicazione, mediante i formalismi citati 
nei punti precedenti.

I problemi considerati riguardano: proprietà di protocolli, 
comportamento corretto di agenti comunicanti, correttezza 
dell'implementazione di un singolo agente, interoperabilità di un 
insieme di agenti.

Le soluzioni proposte utilizzano varie tecniche, come il 
ragionamento abduttivo o il model checking.
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Le attività di ricerca nell'ultima fase del progetto si sono orientate 
principalmente verso le problematiche relative alla specifica 
formale e verifica di proprietà di protocolli, prendendo in 
considerazione settori applicativi come le linee guida mediche o i 
servizi web.

Nel seguito verrà dato un inquadramento generale delle 
problematiche della specifica e verifica di protocolli di 
comunicazione fra agenti.

Gli approcci specifici adottati nel progetto verranno descritti negli 
interventi seguenti.
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Multi-agent systems

A multiagent system contains a number of agents which interact 
with one another through communication.

Multiagent environments have the following characteristics:

• they provide an infrastructure specifying communication and 
interaction protocols;

• they are typically open and have no centralized designer;

• they contain agents which are autonomous and distributed, 
and may be self-interested or cooperative.

Agents communicate in order to better achieve the goals of 
themselves or of the society/system in which they exist.
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Agent Communication Languages (ACL)
An ACL provides agents with a means of exchanging information 
and knowledge. 

ACLs stand usually at a higher level with respect to the 
communication tools of distributed systems, such as remote 
procedure call or method invocation. 

ACLs handle propositions, rules, and actions instead of simple 
objects

An ACL message describes a desired state in a declarative language, 
often in terms of mental attitudes.
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KQML
Knowledge Query and Manipulation Language

KQML is a high-level communication language independent of:
•the transport mechanism (tcp/ip, RMI, …)
•the content language (KIF, Prolog, …)
•the ontology

A KQML message specifies the type of message (performative)

KQML ignores the content portion of a message.  
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KQML messages

The syntax of a KQML message is based on Lisp-like lists, and 
consists of a performative followed by a number of keyword/value 
pairs (syntax is not important). 

Example (a query from Joe about the price of a share of IBM):

(ask-one                            performative
:sender   joe
:receiver   stock-server
:reply-with   ibm-stock
:language   LPROLOG     the representation language of the content
:content   (PRICE IBM ?price)
:ontology   NYSE-TICKS

)
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Some KQML performatives
achieve  S wants R to make something true

advertise  S claims to be suited to processing a performative

ask-one   S wants one of R's answers to question C

ask-all   S wants all of R's answers to question C

reply communicates an expected reply

sorry  S cannot provide a more informative reply

tell  S informs R that it knows C

S: sender   R: receiver   C: content
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FIPA ACL

The Foundation for Intelligent Physical Agents (FIPA) was formed
in 1996 to produce software standards for heterogeneous and 
interacting agents and agent-based systems.

FIPA operates through the open international collaboration of 
member organizations, companies, research centers and 
universities.

Among other specifications, FIPA has defined an agent 
communication language similar to KQML.

FIPA ACL provides 22 communicative acts, like inform, request, 
agree, query-if, …
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The syntax for FIPA ACL messages closely resembles that of 
KQML:

(inform
:sender     agent1
:receiver  agent2
:language Prolog
:content   "weather(today, raining)"

) 

However the semantics of the two languages are rather different.

FIPA ACL does not include the facilitation primitives of 
KQML.
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Semantics of speech acts

Speech acts can be considered as actions.

They can be modeled by using techniques for reasoning about 
actions and change developed in AI, in particular in planning 
research.

The usual approach is to describe an action by means of its 
preconditions and effects.



WOA 2005 16

Modeling speech acts
Cohen and Perrault gave an account of the semantics of speech acts 
by using techniques developed in AI planning research. In 
particular they used a STRIPS-like notation, by means of 
preconditions and effects of actions on a mental state. 

Request(S, H, α)

Preconditions: (S BELIEVE (H CANDO α)) ∧
(S BELIEVE (H BELIEVE (H CANDO α)))

Effects: (H BELIEVE (S BELIEVE (S WANT α)))

Successful completion of the Request ensures that the hearer is 
aware of the speaker's desires, but does not guarantee that action α
will actually be performed.
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Semantics of KQML

Initially KQML had no formal semantics.

A semantics was provided later on by Labrou and Finin in terms of 
preconditions, postconditions, and completion conditions.

Given a sender A and a receiver B, preconditions indicate the 
necessary state for A to send a performative, Pre(A), and for B to 
accept and successfully process it, Pre(B).

Postconditions describe the states of A after utterance of a 
performative, Post(A), and of B after receipt of a message, Post(B).

A completion condition for a performative indicates the final state, 
after, for example, a conversation has taken place.
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Preconditions, postconditions and completion conditions describe 
states of agents in a language of mental attitudes (belief, 
knowledge, desire, and intention) and action descriptions (for 
sending and processing a message).

No semantic models for the mental attitudes are provided.
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Semantics of  tell(A, B, X)

Pre(A): BEL(A, X) ∧ KNOW(A, WANT(B, KNOW(B,S)))

Pre(B): INT(B, KNOW(B, S))

where S may be any of BEL(B, X)  or ¬BEL(B, X)

Post(A): KNOW(A, KNOW(B, BEL(A, X)))

Post(B): KNOW(B, BEL(A, X))

Completion: KNOW(B, BEL(A, X))

An agent cannot offer unsolicited information. A proactive tell
might have Pre(A): BEL(A, X)   and empty Pre(B).
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Semantics of FIPA ACL
The Semantic Language (SL) is the formal language used to define
FIPA ACL's semantics. It is mainly due to Sadek.

SL is a quantified multimodal logic with modal operators:

•Biϕ i believes that ϕ
•Uiϕ i is uncertain about ϕ but thinks that ϕ is more likely than ¬ϕ

•Ciϕ i desires (choice, goal) that ϕ currently holds

To enable reasoning about actions, the universe of discourse 
involves sequences of events (actions).
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The following operators are introduced for reasoning about actions:
•Feasible(a, ϕ)  a can take place and if it does ϕ will be true after that
•Done(a, ϕ) a has just taken place and ϕ was true just before that
•Agent(i, a)  i is the only agent that ever performs action a

From belief, choice and events, the concept of persistent goal PGiϕ
can be defined. Intention Iiϕ is defined as a persistent goal imposing 
the agent to act.

The semantics of a communicative act is specified as sets of SL 
formulas that describe the act's feasibility preconditions and 
rational effects.
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Feasibility preconditions (FP): conditions that must hold for the 
sender to properly perform the communicative act

Rational effects (RE): the effects that an agent can expect to 
occur as a result of performing the action (the reasons for which 
the act is selected). The receiving agent is not required to ensure 
that the expected effect comes about.

Conformance with the FIPA ACL means that when agent A sends 
communicative act c, the FP(c) for A must hold. The 
unguaranteed RE(c) is irrelevant to the conformance issue.
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<i, INFORM(j, ϕ)>

FP: Biϕ ∧ ¬Bi(Bifjϕ ∨ Uifjϕ)
RE: Bjϕ

FP means that i must believe ϕ, and i must not believe that j
already knows ϕ or ¬ϕ, or j is uncertain about ϕ or ¬ϕ.

<i, REQUEST(j, a)>
FP:   FP(a)[i\j]  ∧ Bi Agent(j,a)  ∧ Bi ¬PGj Done(a)
RE:  Done(a)

where FP(a)[i\j] denotes the part of the FPs of a which are mental 
attitudes of i.
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Most of the other communicative actions are derived from INFORM
and REQUEST. For instance:
<i, QUERY-IF(j, ϕ)> ≝

<i, REQUEST(j, <j, INFORM-IF(i, ϕ)> )>

<i, INFORM-IF(j, ϕ)> ≝
<i, INFORM(j, ϕ)>  | <i, INFORM(j, ¬ϕ)>



WOA 2005 25

Social semantics
The above semantic definitions constitute the mental approach, 
because they define semantics of speech acts in terms of the mental 
states of participants. Using mental states to define speech acts may 
be adequate on cooperative multiagent systems, but presents some 
problems when the multiagent system is composed of competitive, 
heterogeneous agents. In this case it is impossible to trust other 
agents completely or to make strong assumptions about their 
internal way of reasoning.

The social approach, instead, considers the social consequences of 
performing speech acts. The approach recognizes that 
communication is inherently public, and thus depends on the 
agent's social context.
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This approach is based on commitments between agents: an agent 
(the debtor) is committed to another agent (the creditor) to make 
some fact true or to carry out some action.

According to the social approach, the various speech acts can be
seen in terms of the social commitments the participants are 
entering. This is obvious for an act like a promise, where a 
commitment is explicitly made, but holds also for other speech acts. 
For instance, in an assertion, the speaker is committed to the truth of 
the proposition.

Using the mental approach it is very difficult to verify the 
compliance of an agent with the semantics of speech acts. How can 
we show that an agent believes what it says if it is not a BDI agent? 

Communication in the social approach is inherently public.
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Singh was probably the first to clearly emphasize the need to define 
the semantics of ACLs in terms of "social notions". He proposed a 
social semantics based on the views of the philosopher Habermas.

He proposed three level of semantics for each act. For instance, by 
informing j that p, i gets committed towards j that p holds 
(objective claim), that he believes that p (subjective claim), and that 
ha has reasons to believe p (practical claim). Singh admits the 
mentalistic approach at the subjective level, but embedded within a 
social attitude (the claims that leads to a commitment).

Technically, the semantics of commitments is expressed in a 
branching-time logic (CTL).



WOA 2005 28

Colombetti has proposed an approach in the same vein as Singh.

There can be various types of commitments: 

C(a, b, p) a is committed to b that p (p can be a fact or an action)

CC(a, b, p, q) conditional commitment: if q holds then C(a, b, p)

PC(a, b, p) precommitment: is a kind of conditional commitment 
(e.g. a request pre-commits the agent to which it is addressed, 
meaning that this agent will be committed in case of acceptance).

For instance, execution of the communicative action

inform(a, b, p)

creates a commitment CC(a, b, p)
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Execution of

request(a, b, p)

creates a precommitment PC(b, a, p)

If  b replies with an accept, the precommitment is transformed in 
an active commitment,

if b replies with reject, the precommitment is cancelled.
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To summarize:

Communicative actions can be modeled by means of preconditions 
and effects on a state.

The state can be a mental state, defined in terms of BDI attitudes, 
or a social state, defined in terms of commitments and social facts.

Formalization of speech acts requires the use of time (temporal 
logics or temporal constraints). In fact, the semantics of both 
mental attitudes and commitments refers to time (eventually the 
intention will be satisfied, eventually the commitment will be 
fulfilled).

Social semantics is more suitable for verifying compliance with 
the semantics in the case of open systems, where internal states of 
agents are inaccessible. 
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Protocols
Agents cannot take part in a dialogue simply by exchanging ACL 
messages.

Analysis of many human conversations shows that there is often a 
pattern which frequently occurring conversations follow 
(example, phone calls).

The mentalistic semantics of communicative acts is too complex 
to determine the possible answer to a message by just reasoning 
on mental states. 

An agent must implement tractable decision procedures that allow
it to select and produce ACL messages that are appropriate to its 
intentions: conversation policies or protocols.
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Protocol specification

Usually protocols are modeled as finite state machines.

Request for action protocol
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Other formalisms have been proposed for protocol specification:

Petri nets

Definite Clause Grammars (DCG): have been used by Labrou
and Fining for KQML protocol specification. DCGs are extensions 
of Context Free Grammars where non-terminals may be compound 
terms, and the body of a rule may contain procedural attachments.

AUML: FIPA specifications define protocols by means of AUML, 
an extension of UML for agents.
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Contract Net protocol
Many protocols have been defined for cooperation among agents.

The best known and most widely applied is the Contract Net 
Protocol: an interaction protocol for cooperative problem solving 
among agents. It is modeled on the contracting mechanism used by
business to govern the exchange of goods and services.

An agent wanting a task to be solved is called the manager; agents 
that might be able to solve the task are called potential contractors.

From a manager's perspective:
•Announce a task that needs to be performed
•Receive and evaluate bids from potential contractors
•Award a contract to a suitable contractor
•Receive and synthesize results
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From a contractor's perspective:
•Receive task announcements
•Evaluate my capabilities to respond
•Respond (decline, bid)
•Perform the task if my bid is accepted
•Report my results

A contractor for a specific task may act as a manager by 
soliciting the help of other agents in solving parts of that ask.

An expiration time gives a deadline for receiving bids.
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Protocols in the social approach
According to Singh, protocols can be specified as sets of 
commitments rather than as finite state machines.

Agents play different roles within a society, and the roles define the 
associate social commitments or obligations to other roles. For 
instance, A will honor a price quote, provided B responds within a 
specified period.

In general, agents can operate on their commitments by 
manipulating or canceling them. 

Because protocol requirements would be expressed solely in terms
of commitments, agents could be tested for compliance on the basis 
of their communications (it is not necessary to know the 
implementation).
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Rigid vs. freeform protocols

Rigid protocols define a set of pre-designed sequences of actions 
in a conversation. They specify which actions are allowed in each 
state of the conversation.

Freeform protocols give the agents more freedom in choosing 
their actions. The protocol does not specify the precise action that 
must be executed at each step, but rather the effect which must be 
achieved. For instance, in a social approach, all commitments must 
be fulfilled by the end of the protocol.
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An example: The NetBill protocol
We consider a simplified form of the NetBill protocol developed for 
buying and selling goods on the Internet.

Consumer Merchant

Request quote for some goods

Send quote

Accept quote
Deliver goods

Send electronic payment order (EPO)

Send receipt
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This protocol can be executed in many different ways. 

For instance, the merchant may send a quote before the customer 
asks for it, to advertise his goods,

or the merchant wants to send the goods without a prior acceptance 
of the customer, similar to the trial version of software products 
which lasts a certain period of time.

Due to this flexibility, the standard approaches to protocol 
representation, e.g. finite state automata, are inadequate.
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Protocol specifications

Many issues are involved in the specification of protocol:

1. Adopt a formalism which allows more flexibility than finite 
state machines (take into account also the semantics of 
communicative actions)

2. Consider unexpected (or exceptional) messages within the 
protocol

3. Specify protocols at a high level of abstraction

4. Adopt a declarative approach

5. Provide formal properties of the protocol proposed.
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Multiagent systems verification
Several different types of verification are possible, depending on the 
type of ACL (mental or social  language), the information available 
(internal state, external state, language specification) and whether we 
wish to verify at design time or at run time. 

Design time verification is important when we want to prove some
properties to guarantee certain behaviors or outcomes of the system.

Run time verification is used to determine if agents are misbehaving 
in a certain run of the system. It is important in an open system 
because it may be the only way to identify rogue agents.
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Verification in open  systems

The following types of verification are useful in an open system:

1. Verify that an agent will always satisfy its social facts

Suppose we are using a social language and we have access to 
the agent's program code, with its internal states. We can verify 
at design time that the agent will always respect its social 
commitments, regardless of what other agents  will do. To do 
this we have to prove that, for all computations of the system, 
social facts that are true for agent i (e.g. commitments) will be 
satisfied.
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2. Interoperability

Verify that a set of agents will interact correctly according to a 
given protocol. This requires to check compliance of each agent 
with the protocol.
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3. Prove a property of a protocol

In this case we do not know the internals of the agents. We will
reason on all possible observable sequences of states, by 
assuming that all agents are compliant.

4. Determine if an agent is not respecting its social facts at 
runtime

In this case we will reason on an observable history of 
messages exchanged by one agent or by the entire system. With 
this information it may be possible to determine if agents have 
complied with the ACL thus far, but not to determine if they 
will comply in the future.
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Approaches to verification
Guerin and Pitt have proposed a general agent communication 
framework within which several notions of verification can be 
investigated. Informally, the framework consists of:

An agent programming language: allowing to program sets of agent
which communicate via message passing. Agents have an internal 
state, which can model the mental state of the agent.

Social state: describes all publicly observable phenomena including 
propositions representing social facts (commitments), control 
variables (roles), the rules governing interaction and the history of 
transmitted messages.

An Agent Communication Language, whose semantics accounts 
both for the mental part and the social part.
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Event calculus
Yolum and Singh proposed an approach based on event calculus, a 
formalism to reason about events (actions). Events can initiate or 
terminate fluents, and time appears explicitly in event calculus 
formulas.

Some of the predicates for reasoning about events are:

Initiates(a, f, t) fluent f holds after event a at time t

Terminates(a, f, t) fluent f does not hold after event a at time t

Initially(f) fluent f holds from time 0

Happens(a, t) event a happens at time t

HoldsAt(f, t) fluent f holds at time t
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Commitments are represented as fluents. There are

base-level commitments C(x, y, p)

conditional commitments CC(x, y, p, q): if condition p is brought 
out, x will be committed to y to bring about q.

Some rules can be defined to reason about commitments. For 
instance

Terminates(e, C(x, y, p), t)  ←
HoldsAt(C(x, y, p), t)  ∧ Happens(e, t)  ∧ Initiates(e, p, t)

(A commitment is no longer in force if the condition committed to holds)

Initiates(e, C(x, y, q), t)  ∧ Terminates(e, CC(x, y, p, q), t) ←
HoldsAt(CC(x, y, p, q), t)  ∧ Happens(e, t)  ∧ Initiates(e, p, t)

(A conditional commitment is transformed into a base-level commitment)
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For the NetBill protocol, let MR be the merchant and CT the 
customer.

Some fluents are:
request(i): the customer has requested a quote for item i
goods(i): the merchant has delivered the goods i
pay(m): the customer has paid the amount m

Some abbreviations for commitments:

accept(i, m) ≡ CC(CT, MR, goods(i), pay(m))
the customer is willing to pay if he receives the goods

promiseGoods(i, m) ≡ CC(MR, CT, accept(i, m), goods(i))
the merchant is willing to send the goods if the customer 
promises to pay the agreed amount
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Protocols are specified by a set of Initiates and Terminates 
clauses. For instance:

Initiates (sendQuote(i, m), promiseGoods(i, m), t)
Initiates(sendAccept(i, m), accept(i, m), t)
Initiates(sendGoods(i), goods(i), t)

remember:
accept(i, m) ≡ CC(CT, MR, goods(i), pay(m))
promiseGoods(i, m) ≡ CC(MR, CT, accept(i, m), goods(i))

sendQuote(i,m)           sendAccept(i,m)                     sendGoods(i)

promiseGoods(i,m)
accept(i, m)
C(MR,CT,goods(i))

goods(i)
C(CT,MR,pay(m))
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Yolum and Singh show how to reason about protocols in their 
event calculus approach. Using an event calculus planner, they 
can generate complete protocol runs, i.e. sequences of actions of 
the protocol such that there are no pending base-level 
commitments.
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Within MASSIVE we have investigated different approaches to 
protocol verification:

A model of agent society based on computational logic, where 
interaction protocols can be described by a set of integrity 
constraints.

An approach based on the logic DLTL, where communicative 
actions are modeled by means of preconditions and effects on the
social state, and protocols can be described by means of rules 
defining permissions to execute actions, and commitment 
fulfillment.

The problem of interoperability has been studied for protocols 
expressed by finite state automata.
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Integrity constraints
A model of agent interaction based on social integrity constraints. 
Social integrity constraints are used to model protocols.

The multiagent system records in a "history" file the observable 
events for the society: H(e), event e happened.

A course of events might give rise to social expectations about the 
future behavior of the agents: E(e) (event e is expected to happen) 
or NE(e) (event e is expected not to happen).

Integrity constraints link events and expectations. For instance:

H(tell(x,y,start)) → E(pass(y))

if x told y "start", then we expect a social event pass(y).
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Expectations can be used to represent commitments. In the NetBill:

H(sendQuote(m,i,tq)) ∧ H(sendAccept(m,i,ta)) ∧ tq < ta →

E(sendGoods(i,tg)) : tg ≤ ta + τ

where the last argument of actions represents time.

If the merchant has sent a quote and the customer has accepted, the 
merchant is committed to send the goods with a maximum delay τ.

Backward expectations allow to express preconditions:

H(sendReceipt(m,i,tr))  → E(sendEPO(i,tg)) : tg < tr

If the merchant sends a receipt and the customer has not sent an
EPO before, the constraint will be violated.
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In this framework it is possible to determine if some agent is not 
respecting its social facts at runtime, by checking compliance of 
the "history" of observable events with the specifications. 

It is also possible to verify compliance of agents to protocols, for 
a restricted class of programs and protocols, by specifying both
agents and protocols in terms of integrity constraints.
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Dynamic linear time logic

DLTL combines linear time logic with dynamic logic, by indexing 
the until operator with regular programs of dynamic logic. It can be 
used to reason about composite actions (programs) and to express
temporal properties.

Given an alphabet Σ of primitive actions, formulas of DLTL are:

p  |  ¬α |  α ∨ β |  α Uπ β

where π is a program over Σ.
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Protocols are formulated as sets of action laws, specifying effects of 
actions. For instance:

[sendQuote(i, m)] promiseGoods(i, m)
[sendAccept(i, m)] accept(i, m)
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The protocol can specify constraints (permissions) on the execution 
of actions by giving preconditions to the actions:

(¬paid  → [sendReceipt] ⊥) if the payment has not been done, 
sendReceipt cannot be executed 
by the merchant.

An agent i satisfies its commitments when, for all commitments 
C(i, j, a) in which agent i is the debtor, the formula

i(C(i, j, a)  → i〈a〉i ⊺)

holds. When an agent is committed to execute action a, then it 
must eventually execute a.
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Reasoning about protocols in DLTL

The verification problems mentioned before can be formulated as 
satisfiability or validity of DLTL formulas.

Since the logic allows to formulate programs, it is also possible to 
prove properties regarding compliance of an agent program with a
given protocol.

In some cases it is necessary to reason simultaneously on the 
behavior of more than one agent. This requires to use the product 
version of DLTL.
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Model checking
One particularly successful approach to the verification of 
concurrent systems is model checking. This approach can be used 
for verifying multiagent systems.

Model checking is a semantic approach: given a model M in a 
given logic L, and a formula ϕ of L, determine whether or not ϕ is 
valid in M.

In particular, practical model checking techniques are based on 
temporal logics and on the close relationships between models for 
temporal logic and finite-state machines describing computations.
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Given a (concurrent) program π and a temporal logic formula ϕ
(describing a specification or property), to show that ϕ holds for 
program π, we proceed as follows:

• take π and generate from it a Kripke structure Mπ. A Kripke
structure consists of a set of states, a set of transitions between 
states, and a function that labels each state with a set of 
propositions that are true in that state. Paths in a Kripke structure 
model computations of π;

• show that Mπ is a model of ϕ, i.e. that Mπ ⊨ϕ.
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If ϕ is an LTL (linear time temporal logic) formula, model checking 
can be performed using automata. The advantage of this approach is 
that both the modeled system and the specification are represented 
in the same way.

In fact, given an LTL formula ϕ, we can construct a Büchi
automaton Bϕ such that the language L(Bϕ) accepted by Bϕ is non-
empty iff ϕ is satisfiable. Furthermore it is easy to build an 
automaton Bπ which directly corresponds to Mπ. 
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This formulation suggest the following model checking 
procedure:

• Construct the two automata Bπ and B¬ϕ.

• Construct the automaton which accepts the intersection of 
the languages L(Bπ) and L(B¬ϕ) (the product of the two 
automata).

• If the intersection is empty, then ϕ holds for π, otherwise a 
run in the intersection provides a counterexample.

In general this problem is PSPACE-complete, but efficient 
techniques have been proposed and implemented.
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Model checking for ACL compliance
Wooldridge et al. have developed an approach to the verification of 
properties of multi-agent systems using model checking, based on 
the language MABLE.  

MABLE is essentially a conventional imperative programming 
language, enriched by constructs from the agent-oriented 
programming paradigm. Agents in MABLE have a mental state 
consisting of beliefs, desires and intentions, and communicate using 
FIPA-like performatives. 

MABLE systems may be augmented by addition of formal claims
about the system. Claims are expressed using a (simplified) version 
of the BDI logic LORA, called MORA. 

The MABLE language has been implemented by making use of 
SPIN, a freely available model-checking system based on LTL. 
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MABLE has been used to verify ACL compliance.

Communication is realized by means of send and receive 
instructions:

send(inform agent2 of (a ==10))

Programmers can define their own semantics for communicative 
acts, separately from a program, and then verify the compliance of 
the program with the semantics. The semantics is expressed in a 
STRIPS-style pre/post-conditions formalism. for instance:

inform(i, j, ϕ)
Pre: (Bel i ϕ)        (if i is sincere)
Post: (Bel j (Int i (Bel j ϕ)))
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The following LORA formula expresses the property that an inform 
performative satisfies its preconditions:

A (Happens inform(i, j, ϕ)) ⇒ (Bel i ϕ)

i.e. whenever agent i sends an inform message to agent j with 
content ϕ, then i believes ϕ (i is sincere).

This formula can be expressed as a MABLE claim, and added to the 
MABLE program describing the multi-agent system we want to 
verify.

The same approach can be used to verify rational effects, e.g.

A (Happens inform(i, j, ϕ)) ⇒ ◊ (Bel j ϕ)
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Within MASSIVE we have experimented the use of model 
checking for proving protocol properties.

In particular in the approach based on DLTL, it is possible to 
carry out the above proofs using model checking techniques, by 
extracting a model from the formulas expressing the domain 
descriptions (action laws), and then checking the other formulas
on it.

An efficient technique for obtaining Büchi automata from DLTL 
formulas has been developed, by extending the construction 
defined for LTL.

Experiments have been done using the model checker SPIN, 
based on LTL.
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Recent research activities within MASSIVE, and future work, aim 
at exploiting the techniques and tools developed in the project in 
various application areas, such as:

Medical guidelines

Web services

A further research topic regards the translation of languages 
which have been proposed for specifying  interaction protocols, in 
particular graphical languages, into the formalisms developed in
the project, to give a formal semantics to those languages.


