
A temporal approach to the specification and verification of
Interaction Protocols

Laura Giordano1, Alberto Martelli2,

Paolo Terenziani1, Alessio Bottrighi1, Stefania Montani1

1Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria
2Dipartimento di Informatica, Università di Torino, Torino

WOA 14-16 Nov 2005 – p.1/30

Summary of the paper

• The paper addresses the problem of specifying and
verifying systems of communicating agents.

• We present an approach developed in the context of the
project PRIN 2003 “Logic-based development and
verification of multi-agent systems".

• We discuss the applicability of this approach to the
specification of clinical guidelines.

WOA 14-16 Nov 2005 – p.2/30

Summary of the paper

• We adopt a social approach to agent communication, where
communication is described in terms of changes to the
social state, and interaction protocols in terms of
permissions and commitments among agents.

• In particular, we make use of a temporal action theory,
where a protocol is defined as a set of temporal constraints,
which specify the effects and preconditions of the
communicative actions on the social state.

• The action theory is based on a Dynamic Linear Time
Temporal Logic (DLTL)

WOA 14-16 Nov 2005 – p.3/30

The logical framework

• A theory for reasoning about communicative actions based
on Dynamic Linear Time Temporal Logic (DLTL), an
extension of LTL (the propositional linear time temporal
logic).

• DLTL extends LTL by strengthening the until operator by
indexing it with the regular programs of dynamic logic. It is,
essentially, a dynamic logic equipped with a linear time
semantics.

• DLTL has an exponential time decision procedure based
on Büchi automata.

WOA 14-16 Nov 2005 – p.4/30

DLTL (Henriksen, Thiagarajan)

Σ be a finite non-empty alphabet of actions .
Σω the set of infinite words on Σ.

Prg(Σ) the set of programs (regular expressions)

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗, where a ∈ Σ

[[π]] represents the set of executions of π

The set of formulas of DLTL(Σ):
DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P are atomic propositions

WOA 14-16 Nov 2005 – p.5/30

DLTL

A model of DLTL(Σ) is a pair M = (σ, V) where σ ∈ Σω and
V : prf(σ) → 2P is a valuation function.

Given a model M = (σ, V), and a prefix τ of σ, we can define
the satisfiability of a formula at τ in M . In particular:

M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that

• ττ ′ ∈ prf(σ)

• M, ττ ′ |= β

• M, ττ ′′ |= α for every prefix τ ′′ of τ ′

WOA 14-16 Nov 2005 – p.6/30

DLTL

We can define derived modalities

• 〈π〉α ≡ ⊤Uπα

• [π]α ≡ ¬〈π〉¬α

• ©α ≡
∨

a∈Σ
〈a〉α (next)

• 3α ≡ ⊤UΣ
∗

α

• 2 ≡ ¬3¬α

WOA 14-16 Nov 2005 – p.7/30

Specifying protocols

We adopt a social approach to protocol specification, where
communicative actions affect the social state of the system,
rather than the internal states of the agents. The social state
records the social facts, like the permissions and the
commitments of the agents, which are created and modified in
the interactions among them.

This formulation does not require the rigid specification of all the
allowed action sequences, e.g. by means of finite state
diagrams.

The action theory can provide a high level specification of the
protocol.

WOA 14-16 Nov 2005 – p.8/30

Action theory

For each action a we can define
Action laws

2(α → [a]β)

Precondition laws

2(α → [a]⊥)

Causal laws

2((α ∧©β) → ©γ)

Persistency is modeled by a completion construction.

WOA 14-16 Nov 2005 – p.9/30

Contract net

The Contract Net protocol begins with an agent (the manager)
broadcasting a task announcement (call for proposals) to other
agents viewed as potential contractors (the participants). Each
participant can reply by sending either a proposal or a refusal.
The manager must send an accept or reject message to all
those who sent a proposal. When a contractor receives an
acceptance it is committed to perform the task.

WOA 14-16 Nov 2005 – p.10/30

Contract net

We assume to have only two agents : M , the manager, and P ,
the participant.

Actions :
cfp, accept, reject, end_protocol whose sender is the merchant
refuse, propose, inform_done whose sender is the participant

Fluents :
CN (which is true during the execution of the protocol)
task (whose value is true after the task has been announced),
replied (the participant has replied),
proposal (the participant has sent a proposal),
acc rej (the manager has sent an accept or reject message)
accepted (the manager has accepted the proposal of participant)
done (the participant has performed the task).

WOA 14-16 Nov 2005 – p.11/30

Action laws

Action laws describe the effects of actions on the social state.

2[cfp](task ∧ CN ∧ CC(M, P, proposal, acc_rej))
2[accept]acc_rej

2[reject]acc_rej

2[refuse]replied

2[propose](replied ∧ proposal∧
CC(P, M, accepted, done))

2[inform_done]done

2[end_protocol(CN)]¬CN

WOA 14-16 Nov 2005 – p.12/30

Permissions

The permissions to execute communicative actions in each state
are represented by precondition laws.

2(¬CN ∨ ¬proposal ∨ acc_rej → [accept]⊥)

Action accept cannot be executed outside the protocol, or if a
proposal has not been done, or if the manager has already
replied

2(¬CN ∨ task → [cfp]⊥)
2(¬CN ∨ ¬proposal ∨ acc_rej → [reject]⊥)
2(¬CN ∨ ¬task ∨ replied → [refuse]⊥)
2(¬CN ∨ ¬task ∨ replied → [propose]⊥)
2(¬CN ∨ ¬accepted ∨ done → [inform_done]⊥)
2(¬CN ∨ ¬task → [end_protocol(CN)]⊥)

Permi: permissions of agent i

WOA 14-16 Nov 2005 – p.13/30

Commitments

Commitments are special fluents

• base-level commitments : C(ag1, ag2, α) (agent ag1 is
committed to agent ag2 to bring about α)

• conditional commitments : CC(ag1, ag2, β, α) (agent ag1 is
committed to agent ag2 to bring about α, if the condition β is
brought about)

In the Contract Net we have the commitments:

C(P, M, replied) and C(M, P, acc_rej)

and conditional commitments

CC(P, M, task, replied) and
CC(M, P, propose, acc_rej).

WOA 14-16 Nov 2005 – p.14/30

Rules for commitments

Some reasoning rules have to be defined for cancelling
commitments when they have been fulfilled and for dealing with
conditional commitments. We introduce the following causal
laws:

2(©α → ©¬C(i, j, α))
2(©α → ©¬CC(i, j, β, α))
2((CC(i, j, β, α) ∧©β) →

(©(C(i, j, α) ∧ ¬CC(i, j, β, α))))

A commitment (or a conditional commitment) to bring about α is
cancelled when α holds, and a conditional commitment
CC(i, j, β, α) becomes a base-level commitment C(i, j, α) when
β has been brought about.

WOA 14-16 Nov 2005 – p.15/30

Fulfilling commitments

We are interested in those execution of the ContractNet protocol
in which all commitments have been fulfilled. We can express
the condition that the commitment C(i, j, α) will be fulfilled within
the execution of the ContractNet protocol by the constraint:

2(C(i, j, α) → (CN U α))

We call Comi the set of constraints of this kind for all
commitments of agent i.

Comi states that agent i will fulfill all the commitments of which
he is the debtor.

WOA 14-16 Nov 2005 – p.16/30

Starting the protocol

We define the initial state Init of the protocol as follows:

{¬CN,¬task,¬replied,¬proposal,¬done,

CC(P, M, task, replied), C(M, P, task)}

WOA 14-16 Nov 2005 – p.17/30

Domain description

D = (Comp(Π), C) is the domain description of The ContractNet
protocol, where:

• Comp(Π) is the completion of the set Π of the action and
causal laws given above

• C = Init ∧
∧

i(Permi ∧ Comi).

The runs of the system according the protocol are the linear
models of D. In these protocol runs all permissions and
commitments have been fulfilled.

WOA 14-16 Nov 2005 – p.18/30

Verifying agents compliance at runtime

We are given a history τ = a1, . . . , an of the communicative
actions executed by the agents, and we want to check the
compliance of that execution with the protocol.

This problem can be formalized as a satisfiability problem. The
formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi))∧ < a1; a2; . . . ; an > ⊤

is satisfiable if it is possible to find a run of the protocol starting
with the action sequence a1, . . . , an.

WOA 14-16 Nov 2005 – p.19/30

Verifying protocol properties

Proving that the protocol satisfies a given (temporal) property ϕ

can be formalized as a em validity check. The formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi)) → ϕ. (1)

is valid if all the runs of the protocol satisfy ϕ. Observe that, all
the agents are assumed to be compliant with the protocol.

For instance,
ϕ = 2[cfp]3¬CN

after a call for proposal has been issued by the manager, the
protocol will eventually reach a state in which the proposition CN
is false, i.e. the protocol is finished, for all possible runs of the
protocol.

WOA 14-16 Nov 2005 – p.20/30

Verifying the compliance at compile-time

Verify that an agent is compliant with the protocol, given the
program executed by the agent itself.

We can specify the behavior of an agent by making use of
complex actions (regular programs). The following program πP

describes the behavior of the participant:

[¬end?; ((cfp; eval_task; (¬ok?; refuse+
ok?; propose))+

reject+
(accept; do_task; inform_done)+
(end_protocol(CN); exit))]∗; end?

Local fluents: done, exit, and ok.
Local actions: eval_task, do_task, exit, done? and ok?.

WOA 14-16 Nov 2005 – p.21/30

Domain description

The program of the participant can be specified by a domain
description ProgP = (ΠP , CP), where ΠP is a set of action laws
describing the effects of the private actions of the participant.

For instance, the action exit sets the proposition end to true:

2[exit]end

The set of constraints

CP = {〈πP 〉⊤,¬end,¬ok}

provides the initial values for the local fluents as well as the
formula 〈πP 〉⊤ stating that the program of the participant is
executable in the initial state.

WOA 14-16 Nov 2005 – p.22/30

Compliance verification

The verification that the participant is compliant with the protocol
can be formalized as a validity check. Let D = (Π, C) be the
domain description describing the protocol, as defined above.
The formula

(Comp(Π)∧Init∧PermM∧ComM∧Comp(ΠP)∧CP) → (PermP∧ComP)

is valid if in all the behaviors of the system, in which the
participant executes its program πP and the manager (whose
internal program is unknown) respects the protocol specification
(in particular, its permissions and commitments), the
permissions and commitment of the participant are also
satisfied.

WOA 14-16 Nov 2005 – p.23/30

Decision problem in DLTL

The satisfiability problem for DLTL can be solved in EXPTIME,
as for LTL, by constructing for each formula α a Büchi automaton
Bα such that there is a one to one correspondence between
models of the formula and infinite words accepted by Bα.

For instance, every infinite word accepted by BD corresponds to
a possible run of the ContractNet protocol.

To prove a property ϕ of the protocol , we can build the
automaton B¬ϕ and check that the language accepted by the
product of BD and B¬ϕ is empty.

WOA 14-16 Nov 2005 – p.24/30

Verification in SPIN

• An alternative way for applying this approach in practice, is
to make use of existing model checking tools, such as for
instance SPIN.

• We have done some experiments with the model checker
SPIN on proving properties of protocols expressed
according to the approach presented in this paper.

• The domain description is formulated as a PROMELA
program, which describes all possible runs allowed by the
domain theory.

• Properties and constraints are expressed as LTL formulas.

WOA 14-16 Nov 2005 – p.25/30

An application to clinical guidelines

• Clinical guidelines can be roughly defined as frameworks for
specifying the "best" clinical procedures and for
standardizing them.

• Many different systems and projects have been developed
in recent years in order to realize computer-assisted
management of clinical guidelines.

• GLARE (Guidelines Acquisition, Representation and
Execution) is one of such domain-independent systems,
developed by a group of computer scientists from UPO and
UNITO, in collaboration with Azienda Ospedaliera S.
Giovanni Battista in Torino.

WOA 14-16 Nov 2005 – p.26/30

An application to clinical guidelines (contd.)

• We have started to analyze
(i) how clinical guidelines can be modelled in our framework
(ii) how the reasoning facilities provided by a model checker

can be exploited within the clinical application
environment

WOA 14-16 Nov 2005 – p.27/30

Modelling clinical guidelines

• Clinical guidelines can be regarded as hierarchically
structured protocols.

• At the lower level, they are basically composed by
sequences of elementary actions and decision actions
needed to choose among alternative paths

• Elementary actions and decision actions can be combined
in structured actions by constructs like sequence, choice
and iteration.

• The overall structure of a clinical guideline can be modelled
as the composition of different protocols.

WOA 14-16 Nov 2005 – p.28/30

Reasoning about clinical guidelines

Model checking capabilities can be used in order to:

• instantiate a guideline on a specific patient;
• contextualize guidelines to specific hospitals, considering

locally available laboratories and resources;
• look for executable paths which satisfy a given set of

requirements (concerning e.g. costs, execution times and
specific goals).

WOA 14-16 Nov 2005 – p.29/30

Conclusions

• We have developed an approach to the specification and
verification of interaction protocols in a multiagent system,
developed in the context of the national project PRIN 2003
“Logic-based development and verification of multi-agent
systems".

• We are currently investigating the applicability of the
approach, on the one hand to the specification and
verification of clinical guidelines and, on the other hand, to
the specification and verification of Web Services, with a
particular regard to the problem of service composition and
coordination.

WOA 14-16 Nov 2005 – p.30/30

	�f Summary of the paper
	�f Summary of the paper
	�f The logical framework
	�f DLTL (Henriksen, Thiagarajan)
	�f DLTL
	�f DLTL
	�f Specifying protocols
	�f Action theory
	�f Contract net
	�f Contract net
	�f Action laws
	�f Permissions
	�f Commitments
	�f Rules for commitments
	�f Fulfilling commitments
	�f Starting the protocol
	�f Domain description
	�f Verifying agents compliance at runtime
	�f Verifying protocol properties
	�f Verifying the compliance at compile-time
	�f Domain description
	�f Compliance verification
	�f Decision problem in DLTL
	�f Verification in SPIN
	�f An application to clinical guidelines
	�f An application to clinical guidelines (contd.)
	�f Modelling clinical guidelines
	�f Reasoning about clinical guidelines
	�f Conclusions

