
On-the-fly Automata Construction
for Dynamic Linear Time Temporal Logic

Laura Giordano1, Alberto Martelli2

1Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria
2Dipartimento di Informatica, Università di Torino, Torino

Cofin - Bologna - 12/1/05 – p.1/32

Summary of the paper

• We present a tableau-based algorithm for obtaining a Büchi
automaton from a formula in Dynamic Linear Time
Temporal Logic.

• Dynamic Linear Time Temporal Logic (DLTL) (Henriksen,
Thiagarajan) extends LTL by indexing the until operator with
regular programs.

• The construction of the states of the automaton is similar to
the standard on-the-fly construction for LTL (Gerth, Peled,
Vardi, Wolper), but a different technique must be used to
verify the fulfillment of until formulas.

Cofin - Bologna - 12/1/05 – p.2/32

Introduction 1

• The problem of constructing automata from Linear-Time
temporal (LTL) formulas has been deeply studied. The
interest on this problem comes from the wide use of
temporal logic for the verification of properties of concurrent
systems. The standard approach to LTL model checking
consists of translating the negation of a given LTL formula
(property) into a Büchi automaton, and checking the product
of the property automaton and the model for language
emptiness.

• A tableau-based algorithm for efficiently constructing a
Büchi automaton has been presented by Gerth, Peled,
Vardi, Wolper. This algorithm allows to build the graph “on
the fly” and in most cases builds quite small automata,
although the problem is intrinsically exponential.

Cofin - Bologna - 12/1/05 – p.3/32

Introduction 2

• In this paper we present an algorithm for constructing a
Büchi automaton from a DLTL formula making use of a
tableau-based construction.

• The validity of a formula α can be verified by constructing
the Büchi automaton B¬α for ¬α: if the language accepted
by B¬α is empty, then α is valid, whereas any infinite word
accepted by B¬α provides a counterexample to the validity
of α.

Cofin - Bologna - 12/1/05 – p.4/32

Motivations

• Dynamic Linear Time Temporal Logic (DLTL) extends LTL
by indexing the until operator with programs in Propositional
Dynamic Logic, and has been shown to be strictly more
expressive than LTL. The satisfiability problem for DLTL can
be solved in exponential time, by reducing it to the
emptiness problem for Büchi automata.

• In other papers (with C. Schwind) we have developed an
action theory based on DLTL and of its product version, and
we have shown how to use it to model multi-agent systems
and to verify their properties, in particular by using model
checking techniques.

• The construction given by Henriksen and Thiagarajan is
highly inefficient since it requires to build an automaton with
an exponential number of states, most of which will not be
reachable from the initial state.

Cofin - Bologna - 12/1/05 – p.5/32

DLTL (Henriksen, Thiagarajan)

Σ be a finite non-empty alphabet of actions.
Σω the set of infinite words on Σ.

Prg(Σ) the set of programs (regular expressions)

Prg(Σ) ::= a | π1 + π2 | π1; π2 | π
∗, where a ∈ Σ

[[π]] represents the set of executions of π

The set of formulas of DLTL(Σ):
DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P are atomic propositions

Cofin - Bologna - 12/1/05 – p.6/32

DLTL

A model of DLTL(Σ) is a pair M = (σ, V) where σ ∈ Σω and
V : prf(σ) → 2P is a valuation function.

Given a model M = (σ, V), and a prefix τ of σ, we can define
the satisfiability of a formula at τ in M . In particular:

M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that

• ττ ′ ∈ prf(σ)

• M, ττ ′ |= β

• M, ττ ′′ |= α for every prefix τ ′′ of τ ′

Cofin - Bologna - 12/1/05 – p.7/32

DLTL

We can define derived modalities

• 〈π〉α ≡ >Uπα

• [π]α ≡ ¬〈π〉¬α

• ©α ≡
∨

a∈Σ〈a〉α (next)

• 3α ≡ >UΣ∗

α

• 2α ≡ ¬3¬α

Cofin - Bologna - 12/1/05 – p.8/32

Automaton construction

A Büchi automaton over Σ is a tuple B = (Q,→, Qin, F) where:

• Q is a finite nonempty set of states;
• →⊆ Q× Σ×Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf(σ) → Q

such that:

• ρ(ε) ∈ Qin

• ρ(τ)
a
→ ρ(τa) for each τa ∈ prf(σ)

A run is accepting iff if contains infinitely many times an
accepting state.
L(B) is the language of ω-words accepted by B.

Cofin - Bologna - 12/1/05 – p.9/32

Automaton construction

In our construction, we make use of an equivalent formulation of
DLTL formulas in which “until” formulas are indexed with finite
automata rather than regular expressions. Thus we have αUAβ

instead of αUπβ, where L(A) = [[π]].
The size of the automaton A can be linear in the size of π.

We will make use of the following notation for automata.
Let A = (Q, δ, QF) be an ε-free nondeterministic finite automaton
over the alphabet Σ without an initial state. Given a state q ∈ Q,
we denote with A(q) an automaton A with initial state q.

Cofin - Bologna - 12/1/05 – p.10/32

Automaton construction

The main procedure to construct the Büchi automaton for a
formula φ builds a graph G(φ) whose nodes are labelled by sets
of formulas. Nodes and edges of the graph correspond to the
states and the transitions of the Büchi automaton. The
procedure makes use of an auxiliary tableau-based function.

The tableau function makes use of signed formulas, i.e.
formulas prefixed with the symbol T or F. This function
- takes as input a set of formulas,
- adds to it formula T

∨
a∈Σ〈a〉>, and

- returns a set of sets of formulas obtained by expanding the
input set according to a set of tableau rules, formulated as
follows:

Cofin - Bologna - 12/1/05 – p.11/32

Tableau rules

T(α ∧ β) ⇒ Tα, Tβ

F(α ∨ β) ⇒ Fα, Fβ

F(α ∧ β) ⇒ Fα|Fβ

T(α ∨ β) ⇒ Tα|Tβ

T¬α ⇒ Fα

F¬α ⇒ Tα

TαUA(q)β ⇒

T(β ∨ (α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αUA(q′)β))(q is a final state)

TαUA(q)β ⇒

T(α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αUA(q′)β)(q is not a final state)

FαUA(q)β ⇒

F(β ∨ (α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αUA(q′)β))(q is a final state)

FαUA(q)β ⇒

F(α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αUA(q′)β)(q is not a final state)

Cofin - Bologna - 12/1/05 – p.12/32

Graph construction

The tableau rules do not expand formulas of the kind 〈a〉α.
Since the operator 〈a〉 is a next state operator, expanding this
kind of formulas from a node n means to create a new node
containing α connected to n through an edge labelled with a.

Given a node n containing a formula T〈a〉α, then the set of
nodes connected to n through an edge labelled a can be
obtained by tableau({Tα|T〈a〉α ∈ n} ∪ {Fα|F〈a〉α ∈ n}).

However this construction does not allow to define correctly
accepting conditions for until formulas.

Cofin - Bologna - 12/1/05 – p.13/32

graph for 2〈A(s1)〉p ≡ F(>UA1(s0)¬(>UA(s1)p))

Cofin - Bologna - 12/1/05 – p.14/32

Problem

We cannot find an accepting set of nodes in this graph: Every
node of this graph contains a formula T(>UA(s1)p), and the only
node which might fulfill the until formulas is node n3, since it
contains T(>UA(s3)p), with s3 final, and Tp.

However it is easy to see that not all infinite paths through n3 will
be accepting. For instance, in the path
n1, n2, n3, n4, n3, n4, n3, n4, . . . no occurrence of n3 fulfills the
formula T(>UA(s1)p) in n2, since the distance in this path
between node n2 and any occurrence of n3 is odd, while all
strings in L(A(s1)) have even length.

Gerth, Peled, Vardi, Wolper use generalized Büchi automata,
but this does not work here.

Cofin - Bologna - 12/1/05 – p.15/32

Construction of the graph

We adopt a different solution, derived from Henriksen and
Thiagarajan, where some of the nodes will be duplicated to
avoid the above problem.

Each node of the graph is a triple (F , x, f), where F is an
expanded set of formulas, x ∈ {0, 1}, and f ∈ {↓, X}.

All true until formulas have a label 0 or 1, i.e. they have the form
TlαUA(q)β where l ∈ {0, 1}.

For each node (F , x, f), the label of an until formula in F will be
assigned as follows. If it is derived from an until formula in a
predecessor node, then its label is the same as that of the until
formula it derives from. Otherwise, if the formula is new, it is
given the label 1− x.

Cofin - Bologna - 12/1/05 – p.16/32

Construction of the graph

The x and f values of the nodes of the graph are assigned as
follows:
• the initial node contains (0, X)

• if a node n contains (x, X) then its successors contain
(1− x, ↓),

• if a node n contains (x, ↓) then its successors contain
◦ (x, X) if n does not contain any until formula with label x

◦ (x, ↓) otherwise

The set of accepting states consists of all states whose
associated node contains f = X.

Cofin - Bologna - 12/1/05 – p.17/32

Correct graph for 2〈A(s1)〉p

Cofin - Bologna - 12/1/05 – p.18/32

Correctness of the procedure

Let ρ be a run of B(φ).
According to the construction of the graph, the x and f values of
the nodes of ρ will be as follows:
(0, X), (1, ↓), . . . , (1, ↓), (1, X), (0, ↓), . . . , (0, ↓), (0, X), · · ·

Let us call 0-sequences or 1-sequences the sequences of
nodes of ρ with x = 0 or x = 1 respectively. If ρ is an accepting
run, these (finite) sequences will alternate infinitely many times.

It is possible to see that every until formula contained in a node
of a 0-sequence must be fulfilled within the end of the next
1-sequence, and vice versa.

Cofin - Bologna - 12/1/05 – p.19/32

Correctness of the procedure

Let ρ be a (non necessarily accepting) run, and let s be a state
of ρ containing an until formula φ with label l. Then, either

1. all states following s in ρ contain an until formula derived
from φ with label l, or

2. there is a state following s where φ is fulfilled

Condition 2 holds iff ρ is an accepting run.

Theorem. Let M = (σ, V) and M, ε |= φ. Then σ ∈ L(B(φ)).

Theorem. Let σ ∈ L(B(φ)). Then there is a model M = (σ, V)
such that M, ε |= φ.

As usual, validity of a formula φ in DLTL can be checked by
checking emptiness of L(B(¬φ)).

Cofin - Bologna - 12/1/05 – p.20/32

Action theory

Action laws

2(α → [a]β)

Causal laws

2([a]α → [a]β)

Persistency is modelled by a completion construction (Reiter) of
action and causal laws.

Cofin - Bologna - 12/1/05 – p.21/32

Specifying protocols (social approach)

In a social approach communicative actions affect the "social
state" of the system, rather than the internal states of the
agents. The social state records the social facts, like the
permissions and the commitments of the agents, which are
created and modified in the interactions among them.

This protocol does not require the rigid specification of all the
allowed action sequences, e.g. by means of finite state
diagrams.

The action theory can provide a high level specification of the
protocol.

Cofin - Bologna - 12/1/05 – p.22/32

Permissions

Permissions are represented by Precondition laws of the form:
α → [a]⊥,

meaning that the execution of an action a is not possible if α

holds (i.e. there is no resulting state following the execution of a

if α holds).

2(¬paid → [sendReceiptMrCt]⊥)

Permi (permissions of agent i): the set of all the precondition
laws of the protocol pertaining to the actions of which agent i is
the sender.

Cofin - Bologna - 12/1/05 – p.23/32

Commitments

Commitments are special fluents

• base-level commitments: C(ag1, ag2, action) (agent ag1 is
committed to agent ag2 to execute the action)

• conditional commitments: CC(ag1, ag2, p, action) (agent
ag1 is committed to agent ag2 to execute action, if the
condition p is brought about)

Cofin - Bologna - 12/1/05 – p.24/32

Specifying protocols

Action laws from the point of view of the merchant (the same
for the customer):

2([sendQuoteMrCt](CC(mr, ct, accepted, sendGoodsMrCt)∧
CC(mr, ct, paid, sendReceipt)))

2(requested → [sendQuoteMrCt]¬requested)
2([sendPaymentCtMr]paid)
. . .

Cofin - Bologna - 12/1/05 – p.25/32

Rules for commitments

2([a]¬C(i, j, a))
2([a]¬CC(i, j, p, a))
2((CC(i, j, p, a) ∧©p) →

©(C(i, j, a) ∧ ¬CC(i, j, p, a)))

where we assume that the action a is shared by the agents i

(debtor) and j (creditor)

Cofin - Bologna - 12/1/05 – p.26/32

Fulfillment of commitments

An agent i satisfies its commitments when, in all the runs of the
system, for all the possible commitments C(i, j, a), the formula

2(C(i, j, a) → 3〈a〉>)

holds: when an agent is committed to execute action a, then it
must eventually execute a.
We denote with Comi the set of all the formulas describing the
satisfaction of the commitments of agent i.

Cofin - Bologna - 12/1/05 – p.27/32

Specifying a protocol

A protocol can be described as:

• A domain description D consisting of the action and
causal laws of the protocol (suitably completed to cope with
persistency).

• Precondition laws Permi (permissions) for each agent i.
• Commitment constraints Comi for each agent i.

Cofin - Bologna - 12/1/05 – p.28/32

Reasoning about protocols

Given a domain description D we can build a Büchi automaton
whose runs are all possible executions of the actions (model).

Given the formula the formula:

D ∧
∧

j

(Permj ∧ Comj)

we can build a Büchi automaton whose runs are all correct
executions of the protocol.

Cofin - Bologna - 12/1/05 – p.29/32

Verifying the compliance of agents to the protocol

We are given a history τ = a1, . . . , an of the communicative
actions executed by the agents, and we want to verify that the
history τ is the prefix of a run of the protocol. This means that

(D ∧
∧

i

(Permi ∧ Comi))∧ < a1; a2; . . . ; an > >

must be satisfiable. In fact, the above formula is satisfiable if it is
possible to find a run of the protocol starting with the action
sequence a1, . . . , an.
This verification is carried out at runtime.
We can carry out the construction on-the-fly whenever a new
action is executed by some agent, until either the protocol is
completed or the construction cannot go on, in case of violation
of the protocol.

Cofin - Bologna - 12/1/05 – p.30/32

Specifying rigid protocols

A rigid protocol can be formalized as a regular program, or a
finite automaton.

Contract Net:

cfp(M, all); (refuse(i, M)+
(propose(i, M); (reject(M, i)+

accept(M, i); inform(i, M, Done(i, task)))))

In this case the domain description specifies the semantics of
the actions.

Cofin - Bologna - 12/1/05 – p.31/32

Verifying rigid protocols

We can verify the correctness of a protocol, specified by a
regular program Prog, with respect to the semantics of the
actions.
This can be formalized as the validity check of the formula

(D ∧ 〈Prog〉>) →
∧

i

(Permi ∧ Comi)

Cofin - Bologna - 12/1/05 – p.32/32

	�f Summary of the paper
	�f Introduction 1
	�f Introduction 2
	�f Motivations
	�f DLTL (Henriksen, Thiagarajan)
	�f DLTL
	�f DLTL
	�f Automaton construction
	�f Automaton construction
	�f Automaton construction
	�f Tableau rules
	�f Graph construction
	graph for $Box langle {cal A}(s_1)angle
p equiv 	extbf {F}(op {cal U}^{{cal A}_1(s_0)}
eg (op {cal U}^{{cal A}(s_1)}p))$
	�f Problem
	�f Construction of the graph
	�f Construction of the graph
	�f Correct graph for $Box langle {cal A}(s_1)angle
p$
	�f Correctness of the procedure
	�f Correctness of the procedure
	�f Action theory
	�f Specifying protocols (social approach)
	�f Permissions
	�f Commitments
	�f Specifying protocols
	�f Rules for commitments
	�f Fulfillment of commitments
	�f Specifying a protocol
	�f Reasoning about protocols
	�f Verifying the compliance of agents to the protocol
	�f Specifying rigid protocols
	�f Verifying rigid protocols

