
Verifying Protocol Conformance on the fly by using SC-IFF
proof procedure

Paola Mello, Federico Chesani

Universita` di Bologna
14 Luglio 2004

Open Societies of Open Societies of
agents/computeesagents/computees

■ Open societies
– agents/computees are heterogeneous
– no assumptions on the behaviour of agents
– observation of external behaviour of agents (interactions)

■ Interactions
– agent communication language
– interaction protocols
– issues: formal specification, verification of compliance

Aims of the Society modelAims of the Society model

■ Use of a declarative and CL-based representation for the
specification of ACL/protocols

■ Uniform computational model to understand different
aspects of interaction in an open and global
environment

■ Support goal-directed behaviour of societies
■ Corresponding operational model
■ Possibility to verify interactions, and prove properties

Compliance VerificationCompliance Verification

Policies?

Computees

Behaviour

Social Infrastructure

Fulfillment

Violation

Reasoning
and verification

module

Protocols

Social infrastructureSocial infrastructure

Behaviour

Social Infrastructure

Fulfillment

Violation

Verify
Compliance

YES

NO

Expectations

Protocols

Reasoning

Knowledge RepresentationKnowledge Representation
<<SOKB, SEKBSOKB, SEKB, , ICICss, , GoalsGoals>>

■ SOKB: society knowledge base (roles and rules)
– LP clauses with expectations

■ SEKB: consists of
– History (HAP): set of Happened events that are “socially relevant” (e.g.

communicative acts). Ground facts of the kind: H(Event [,Time]).
– EXP: (positive or negative) expectations on the correct (social) behaviour

of members: [¬] E(Event [, Time]) / [¬] EN(Event [, Time])
■ ICs: protocol specification by means of integrity

constraints (social semantics)
■ Goals: Society can be goal-directed

– LP Goals

Social infrastructureSocial infrastructure

Behaviour

Social Infrastructure

Fulfillment

Violation

Reasoning Verify
Compliance

YES

NO

Expectations

(1)on-the fly verification of compliance
to protocols

Social Integrity Constraints Social Integrity Constraints
(ICs)(ICs)

■ Example of Social Integrity Constraint
Society where agents can exchange resources:

If I make you an offer, you are expected to answer to me by either
accepting or refusing before a deadline d

H(tell(Me,You,offer(Item,Price),T) →
E(tell(You,Me,accept(Item,Price),T’), T’<=T+d ∨
E(tell(You,Me,refuse(Item,Price), T’), T’<=T+d

If you accept my offer, you are expected to not refuse it later

H(tell(You,Me,accept(Item,Price), T) →
EN(tell(You,Me,refuse(Item,Price), Tr), Tr>=T

Example (fulfilment)Example (fulfilment)

 H(tell(yves,thomas,offer(scooter,10$),1)

thomasyves

E(tell(thomas,yves,accept(scooter,10$),T’), T’ < 7

 ∨ E(tell(thomas,yves,refuse(scooter,10$),T’), T’ < 7

H(tell(thomas,yves,accept(scooter,10$),5)

fulfillment!

Example (violation)Example (violation)

 H(tell(yves,thomas,offer(scooter,10$),1)

thomasyves

E(tell(thomas,yves,accept(scooter,10$),T’), T’ < 7

 ∨ E(tell(thomas,yves,refuse(scooter,10$),T’), T’ < 7

violation!

Example (violation)Example (violation)

 H(tell(yves,thomas,offer(scooter,10$),1)

thomasyves

H(tell(thomas,yves,accept(Item,Price), T)

EN(tell(thomas,yves,refuse(Item,Price), Tr), Tr>=T

H(tell(thomas,yves,accept(scooter,10$),5)

H(tell(thomas,yves,refuse(scooter,10$),8)

violation!

Society Instance as Abductive Society Instance as Abductive
Logic ProgramLogic Program

■ Instance of a Society (SHAP): ALP <P,Ab,IC> with
– P = SOKB ∪ HAP
– Ab = {E, EN, ¬ E, ¬ EN}
– IC = ICS

■ Consistency:
– ICS-Consistency

– E-Consistency
– ¬-Consistency
– Fulfillment

ConsistencyConsistency

Given a society and a set HAP of events…

3. a set of expectations EXP is ICs-consistent iff
SOKB ∪ HAP ∪ EXP ICs

4. a set of expectations EXP is E-consistent iff
{ E(p), EN(p) } ⊈ EXP

5. a set of expectations EXP is ¬-consistent iff
{ E(p), ¬E(p) } ⊈ EXP

{ EN(p), ¬EN(p) } ⊈ EXP

6. a (ICs,E,¬) consistent EXP is fulfilled iff
HAP ∪ EXP {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} ╞

7. if no consistent set of expectations fulfilled exists, HAP produces a
violation in the society

Society Constraint Proof Procedure Society Constraint Proof Procedure
(wrt IFF)(wrt IFF)

Called SCIFF (Society Constraint IFF)
Extends IFF.

New features:
■ Accepts new events as they happen (incremental, dynamic)
■ Generates the expectations E, not E, EN, not EN on the basis of

behaviour of the members of a society and of ICs.
■ Verifies the correspondence between the happened events and

the expected events (fulfillment)
■ Identifies (as soon as possible) the situation where there is

violation and/or inconsistency
■ The abduced atoms may have variables quantified ∀ and

variables quantified ∃

PropertiesProperties
■ General properties (of the framework):

– well-definedness of programs/ICs
– termination of conformance checking (link to structural properties of

ICs)
■ Properties of interaction

– mechanism viewpoint:
• “general” properties (fairness, termination, …)
• “specific” (some proposition/formula holds): can be defined by way of ICs

???

– agent viewpoint: conformance to protocols

General Society PropertiesGeneral Society Properties

■ Termination of conformance checking
– aim: to identify classes of Societies (SOKB, ICs, G) for which, under suitable

syntactic conditions, any execution of SCIFF terminates, given each possible
history

– classes must be expressive enough to represent certain significant protocols,
while guaranteeing termination of SCIFF.

■ Well-definedness of Societies
– aim: given a society (SOKB, ICs, G), to guarantee that, under certain hypotheses,

this society will be well-defined, i.e., among its possible (closed) instances there
exists at least one for which goal G is achieved.

■ Idea: use background from LP, e.g.:
– call-consistent normal LP => ∃ at least one (total) stable model
– stratified normal LP => ∃ exactly one (total) stable model
– acyclic ALP and query => termination

ExamplesExamples

■ Not well-defined:
• Goal: g.
• SOKB: g <- E(p), E(q).
• ICS: E(p) -> EN(q).

Or:
• Goal: true.
• ICS: H(p) -> EN(p).

Not H(p) -> E(p).

■ Not terminating:
– ICS: E(p(X)) -> E(p(f(X))).

Agent Compliance (Agent Compliance (wrt ICswrt ICs),),
 [Alberti et alii ENTCS2003] [Alberti et alii ENTCS2003]

■ Negative compliance: A group of agents is negatively compliant
to a set of social integrity constraints iff its members never
produce a social event which is expected not to happen;

■ Positive compliance: A group of agents is positively compliant
to a set of social integrity constraints iff its members never fail to
produce social events which are expected to happen;

■ Strong compliance: A group of agents is strongly compliant to a
set of social integrity constraints iff it is both negatively and
positively compliant.

■ Compliance is a property which can be verified on-the-fly (in
open environments)

Agent Conformance (Agent Conformance (wrt Protocolwrt Protocol))
[Endriss et alii, AAMAS03][Endriss et alii, AAMAS03]

■ Weak conformance An agent is weakly conformant to a protocol P
iff it never utters any illegal dialogue move (wrt. P)(negative?).

■ Exhaustive conformance An agent is exhaustively conformant to a
protocol P iff it is weakly conformant to P and it will utter at least one
legal output move for any legal input of P it receives (strong?).

■ An additional notion of conformance (robust conformance) is related
to the behaviour of computees in the event of illegal incoming
messages (FIPA not-understood).

available
information
about the

agent

no
 a

-p
rio

ri
in

fo
rm

at
io

n

de
si

gn
tim

e

ex
ec

ut
io

n
tim

e

time of
verification

w
ea

k
co

nf
or

m
an

ce

po
si

tiv
e

co
m

pl
ia

nc
e

sp
ec

ifi
ca

tio
n

(2) (a)

(e)

(b)

(f)

(t*)

(1)

ro
bu

st
co

nf
or

m
an

ce

(d)

(h)(3)

ex
ha

us
tiv

e
co

nf
or

m
an

ce

(c)

(g)

Degrees of verification

Proving specific propertiesProving specific properties

■ Related work: model checking.
– Prove static properties on mechanism
– E.g. Needham-Schroeder: protocol is prone to man-in-the-middle

breaks
– Need full knowledge about the mechanism

■ Using SCIFF (open questions):
– how to use model checking techniques in an open environment

(partial information)?
– how to extend SCIFF to achieve results comparable with those

achieved by model checking techniques? (possible?)
– idea: can SCIFF be used to generate compliant histories of

events? (which formalism to synthesize compliant histories?)

Collaboration?Collaboration?
■ Torino: Logic-based protocols & DyLOG

– mentalistic approach (agents) vs. social approach (Society
infrastructure)

– conformance:
• investigate on the relationship between the different notions

of conformance/compliance

– translation AUML-> DyLog:
• It would be interesting to investigate if the approach used for

the translation AUML ->DyLog could be extended for
translating AUML specification into ICS

– from the implementation point of view: integration of
DyLog and SOCS-SI

Ambito ApplicativoAmbito Applicativo

■ Analizzare e validare i modelli e i linguaggi definiti in
diversi scenari applicativi.

■ Realizzazione di interazioni tra agenti basate su
dialoghi, con particolare attenzione alla negoziazione
per l’allocazione di risorse

■ Esempio di test in SOCS: aste combinatorie, Net-Bill

■ Sistemi di supporto alla diagnosi medica e di verifica di
protocolli in campo medico (linee guida).

Demo!Demo!
■ A simplified auction scenario will be presented.
■ Auction protocol is defined thorugh ICs. Amongst them:

(1) If a computee makes a bid, the auctioneer is expected to answer by
either saying win or lose before a deadline d

H(tell(Bidder,Auctioneer,bid(Item,Price),T) →
E(tell(Auctioneer,Bidder,win(Item,Price),T’), T’≤T+d ∨
E(tell(Auctioneer,Bidder,lose(Item,Price), T’), T’ ≤T+d

 (2) Once the auctioneer awards a bidder (“win”), the auctioneer is expected
not to acknowledge the same bidder with “lose”

H(tell(Auctioneer,Bidder,win(Item,Price), T) →
EN(tell(Auctioneer,Bidder,lose(Item,Price), Tr), Tr≥T

Demo!Demo!

■ In the first run, a “compliance” history is shown.

■ Agent f open an auction in order to get a taxi to a
station

■ Three taxi (taxi1, taxi2, taxi3) make a bid each.

■ f notifies taxi1 “win”, and to taxi2 and taxi3 it
notifies “lose”

Demo!Demo!

■ In the second run, a “wrong” interaction is shown.

■ Same scenario as before, but this time the
auctioneer f does not notify taxi2 and taxi3 “lose”

■ As soon as the history is declared “closed” (no
more events can happen anymore), SOCS-SI
detects the violation due to the ICs:

H(tell(Bidder,Auctioneer,bid(Item,Price),T) →
E(tell(Auctioneer,Bidder,win(Item,Price),T’), T’≤T+d

∨
E(tell(Auctioneer,Bidder,lose(Item,Price), T’), T’ ≤T+d

Goal AchievabilityGoal Achievability

■ Society can be goal-directedSociety can be goal-directed
■ Given an instance of a society Given an instance of a society SSHAPHAP with (open/closed) with (open/closed)

history, a goal history, a goal GG is is achievableachievable in in SSHAPHAP iff there exists an iff there exists an
(open/closed) consistent fulfilled set of expectations EXP(open/closed) consistent fulfilled set of expectations EXP
s.t.: s.t.:

SOKB SOKB ∪∪ EXPEXP ∪∪ HAP HAP ╞╞══ G G
■ We write:We write:

SSHAPHAP | |≈≈ EXPEXP GG
i.e.,

Comp(SOKB ∪ EXP) ∪ HAP ∪ CET╞══ G

Operational SemanticsOperational Semantics

■ Based on IFF
■ Data structure

T = <R,CS,PSIC,EXP,HAP,FULF,VIOL>
Where
■ R: Conjunction of literals
■ CS: CLP-Constraint Store
■ PSIC: Partially solved ICs
■ EXP: (Pending) Expectations
■ FULF: Fulfilled expectations
■ VIOL: Violated Expectations

DerivationDerivation

■ Initial Node

T0 = <{G}, ∅,ICs ,∅ , SHAPi ,∅, ∅ >
(may start with a non-empty history HAPi)

■ Derivation T0 → T1 … → → Tn (quiescence)
■ Successful derivation:

– Final node: Tn=<∅,CS,PSIC,EXP,HAPf,FULF,∅ >

– written SHAPi |~EXP ∪ FULF
HAPf G

TransitionsTransitions

■ IFF-Like (extended)
■ Dynamically growing history
■ Fulfillment, violation
■ Consistency
■ CLP

SoundnessSoundness

■ Soundness. Given a society instance SHAPi, if

SHAPi |~EXP ∪ FULF
HAPf G

with expectation answer (EXP ∪ FULF,σ) then

SHAPf |≈(EXP ∪ FULF)σ Gσ
■ Proved under

– allowedness conditions

– without abducibles quantified ∀

– Extendable to quantified ∀ (sketched, see lemma to abducibles
quantified ∀)

SC-IFF
SC-IFF without abducibles

Soundness: scheme of proofSoundness: scheme of proof

■ Based on Soundness of
IFF
– In both cases of open and

closed history SC-IFF
•without dynamic H
•without abducibles

IFF

Prolog/CHR-based Prolog/CHR-based
Implementation of SCIFFImplementation of SCIFF

■ (Attributed) Variables
– Quantification (exist, forall) in attributes
– Ad-hoc constraint solver for unification

■ Implementation of Data Structures
– R as the Prolog resolvent
– CS as CLP stores (CLPFD, CLPB)
– PSIC,EXP,HAP,FULF,VIOL implemented as CHR constraints

■ Implementation of Transitions
– Most (propagation, fulfillment/violation, consistency…) as CHR rules
– CLP: delegated to the solvers

