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Open Societies of Open Societies of 
agents/computeesagents/computees

■ Open societies
– agents/computees are heterogeneous
– no assumptions on the behaviour of agents
– observation of external behaviour of agents (interactions)

■ Interactions
– agent communication language
– interaction protocols
– issues: formal specification, verification of compliance



Aims of the Society modelAims of the Society model

■ Use of a declarative and CL-based representation for the 
specification of ACL/protocols 

■ Uniform computational model to understand different 
aspects of interaction in an open and global 
environment

■ Support goal-directed behaviour of societies
■ Corresponding operational model
■ Possibility to verify interactions, and prove properties



Compliance VerificationCompliance Verification
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Knowledge RepresentationKnowledge Representation
<<SOKB, SEKBSOKB, SEKB, , ICICss, , GoalsGoals>>

■ SOKB: society knowledge base (roles and rules) 
– LP  clauses with expectations

■ SEKB: consists of
– History (HAP): set of Happened events that are “socially relevant” (e.g. 

communicative acts). Ground facts of the kind: H( Event [,Time] ).
– EXP: (positive or negative) expectations on the correct (social) behaviour 

of members: [¬ ] E( Event [, Time ] )  /  [¬ ] EN( Event [, Time ] )
■ ICs: protocol specification by means of  integrity 

constraints (social semantics)
■ Goals:  Society can be goal-directed

– LP Goals
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Social Integrity Constraints Social Integrity Constraints 
(ICs)(ICs)

■ Example of Social Integrity Constraint
Society where agents can exchange resources:

If I make you an offer, you are expected to answer to me by either 
accepting or refusing before a deadline d

H(tell(Me,You,offer(Item,Price),T) →
E(tell(You,Me,accept(Item,Price),T’), T’<=T+d ∨
E(tell(You,Me,refuse(Item,Price), T’), T’<=T+d

If you accept my offer, you are expected to not refuse it later

H(tell(You,Me,accept(Item,Price), T) →
EN(tell(You,Me,refuse(Item,Price), Tr), Tr>=T



Example (fulfilment)Example (fulfilment)

 H(tell(yves,thomas,offer(scooter,10$),1) 

thomasyves

E(tell(thomas,yves,accept(scooter,10$),T’), T’ < 7 

 ∨ E(tell(thomas,yves,refuse(scooter,10$),T’), T’ < 7 

H(tell(thomas,yves,accept(scooter,10$),5) 

fulfillment!



Example (violation)Example (violation)

 H(tell(yves,thomas,offer(scooter,10$),1) 

thomasyves

E(tell(thomas,yves,accept(scooter,10$),T’), T’ < 7 

 ∨ E(tell(thomas,yves,refuse(scooter,10$),T’), T’ < 7 

violation!



Example (violation)Example (violation)

 H(tell(yves,thomas,offer(scooter,10$),1) 

thomasyves

H(tell(thomas,yves,accept(Item,Price), T) 

EN(tell(thomas,yves,refuse(Item,Price), Tr), Tr>=T 

H(tell(thomas,yves,accept(scooter,10$),5) 

H(tell(thomas,yves,refuse(scooter,10$),8) 

violation!



Society Instance as Abductive Society Instance as Abductive 
Logic ProgramLogic Program

■ Instance of a Society (SHAP): ALP <P,Ab,IC> with
– P = SOKB ∪ HAP
– Ab = {E, EN, ¬ E, ¬ EN}
– IC = ICS

■ Consistency:
– ICS-Consistency

– E-Consistency
– ¬-Consistency
– Fulfillment



ConsistencyConsistency

Given a society and a set HAP of events…

3. a set of expectations EXP is ICs-consistent iff
SOKB ∪ HAP ∪ EXP  ICs 

4. a set of expectations EXP is E-consistent iff
{ E(p), EN(p) } ⊈ EXP

5. a set of expectations EXP is ¬-consistent iff
{ E(p), ¬E(p) } ⊈ EXP

{ EN(p), ¬EN(p) } ⊈ EXP

6. a (ICs,E,¬) consistent EXP is fulfilled iff
HAP ∪ EXP {E(p) → H(p)} ∪ {EN(p) → ¬H(p)} ╞

7. if no consistent set of expectations fulfilled exists, HAP produces a 
violation in the society



Society Constraint Proof Procedure Society Constraint Proof Procedure 
(wrt IFF)(wrt IFF)

Called SCIFF (Society Constraint IFF)
Extends IFF. 

New features:
■ Accepts new events as they happen (incremental, dynamic)
■ Generates the expectations  E, not E, EN, not EN  on the basis of 

behaviour of the members of a society and of ICs.
■ Verifies the correspondence between the happened events and 

the expected events (fulfillment)
■ Identifies (as soon as possible) the situation where there is 

violation and/or inconsistency
■ The abduced atoms may have variables quantified ∀ and 

variables quantified ∃ 



PropertiesProperties
■ General properties (of the framework):

– well-definedness of programs/ICs
– termination of conformance checking (link to structural properties of 

ICs)
■ Properties of interaction

– mechanism viewpoint: 
• “general” properties (fairness, termination, …)
• “specific” (some proposition/formula holds):  can be defined by way of ICs 

???

– agent viewpoint: conformance to protocols



General Society PropertiesGeneral Society Properties

■ Termination of conformance checking
– aim: to identify classes of Societies (SOKB, ICs, G) for which, under suitable 

syntactic conditions, any execution of SCIFF terminates, given each possible 
history

– classes must be expressive enough to represent certain significant protocols, 
while guaranteeing termination of SCIFF.

■ Well-definedness of Societies
– aim: given a society (SOKB, ICs, G), to guarantee that, under certain hypotheses, 

this society will be well-defined, i.e., among its possible (closed) instances there 
exists at least one for which goal G is achieved.

■ Idea: use background from LP, e.g.:
– call-consistent normal LP =>  ∃ at least one (total) stable model
– stratified normal LP =>  ∃ exactly one (total) stable model
– acyclic ALP and query => termination



ExamplesExamples

■ Not well-defined:
• Goal:    g.
• SOKB:  g     <-  E(p), E(q).
• ICS:   E(p) -> EN(q).

Or:
• Goal: true.
• ICS:    H(p) -> EN(p).

Not H(p) -> E(p).

■ Not terminating:
– ICS: E(p(X))  ->  E( p( f( X))).



Agent Compliance (Agent Compliance (wrt ICswrt ICs),),
 [Alberti et alii ENTCS2003] [Alberti et alii ENTCS2003]

■ Negative compliance: A group of agents is negatively compliant 
to a set of social integrity constraints iff its members never 
produce a social event which is expected not to happen;

■ Positive compliance: A group of agents is positively compliant 
to a set of social integrity constraints iff its members never fail to 
produce social events which are expected to happen;

■ Strong compliance: A group of agents is strongly compliant to a 
set of social integrity constraints iff it is both negatively and 
positively compliant.

■ Compliance is a property which can be verified on-the-fly (in 
open environments)



Agent Conformance (Agent Conformance (wrt Protocolwrt Protocol) ) 
[Endriss et alii, AAMAS03][Endriss et alii, AAMAS03]

■ Weak conformance An agent is weakly conformant to a protocol P 
iff it never utters any illegal dialogue move (wrt. P)(negative?).

■ Exhaustive conformance An agent is exhaustively conformant to a 
protocol P iff it is weakly conformant to P and it will utter at least one 
legal output move for any legal input of P it receives (strong?).

■ An additional notion of conformance (robust conformance) is related 
to the behaviour of computees in the event of illegal incoming 
messages (FIPA not-understood).
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Proving specific propertiesProving specific properties

■ Related work: model checking. 
– Prove static properties on mechanism
– E.g. Needham-Schroeder: protocol is prone to man-in-the-middle 

breaks
– Need full knowledge about the mechanism

■ Using SCIFF (open questions):
– how to use model checking techniques in an open environment 

(partial information)?
– how to extend SCIFF to achieve results comparable with those 

achieved by model checking  techniques? (possible?)
– idea: can SCIFF be used to generate compliant histories of 

events? (which formalism to synthesize compliant histories?)



Collaboration?Collaboration?
■ Torino: Logic-based protocols & DyLOG

– mentalistic approach (agents) vs. social approach (Society 
infrastructure)

– conformance:
• investigate on the relationship between the different notions 

of conformance/compliance

– translation AUML-> DyLog:
• It would be interesting to investigate if the approach used for 

the translation AUML ->DyLog could be extended for 
translating AUML specification into ICS

– from the implementation point of view: integration of 
DyLog and SOCS-SI



Ambito ApplicativoAmbito Applicativo

■ Analizzare e validare i modelli e i linguaggi definiti in 
diversi scenari applicativi. 

■ Realizzazione di interazioni tra agenti basate su 
dialoghi, con  particolare attenzione alla negoziazione 
per l’allocazione di risorse

■ Esempio di test in SOCS: aste combinatorie, Net-Bill

■ Sistemi di supporto alla diagnosi medica e di verifica di 
protocolli in campo medico (linee guida).  



Demo!Demo!
■ A simplified auction scenario will be presented.
■ Auction protocol is defined thorugh ICs. Amongst them:

(1) If a computee makes a bid, the auctioneer is expected to answer by 
either saying win or lose before a deadline d

H(tell(Bidder,Auctioneer,bid(Item,Price),T) →
E(tell(Auctioneer,Bidder,win(Item,Price),T’), T’≤T+d ∨
E(tell(Auctioneer,Bidder,lose(Item,Price), T’), T’ ≤T+d

 (2) Once the auctioneer awards a bidder (“win”), the auctioneer is expected 
not to acknowledge the same bidder with “lose”

H(tell(Auctioneer,Bidder,win(Item,Price), T) →
EN(tell(Auctioneer,Bidder,lose(Item,Price), Tr), Tr≥T



Demo!Demo!

■ In the first run, a “compliance” history is shown. 

■ Agent f open an auction in order to get a taxi to a 
station

■ Three taxi (taxi1, taxi2, taxi3) make a bid each.

■ f notifies taxi1 “win”, and to taxi2 and taxi3 it 
notifies “lose”



Demo!Demo!

■ In the second run, a “wrong” interaction is shown. 

■ Same scenario as before, but this time the 
auctioneer f does not notify taxi2 and taxi3 “lose”

■ As soon as the history is declared “closed” (no 
more events can happen anymore), SOCS-SI 
detects the violation due to the ICs:

H(tell(Bidder,Auctioneer,bid(Item,Price),T) →
E(tell(Auctioneer,Bidder,win(Item,Price),T’), T’≤T+d 

∨
E(tell(Auctioneer,Bidder,lose(Item,Price), T’), T’ ≤T+d



Goal AchievabilityGoal Achievability

■ Society can be goal-directedSociety can be goal-directed
■ Given an instance of a society Given an instance of a society SSHAPHAP with (open/closed)  with (open/closed) 

history, a goal history, a goal GG is  is achievableachievable  in in SSHAPHAP  iff there exists an iff there exists an 
(open/closed) consistent fulfilled set of expectations EXP(open/closed) consistent fulfilled set of expectations EXP  
s.t.: s.t.: 

SOKB SOKB ∪∪  EXPEXP  ∪∪  HAP HAP ╞╞══ G G
■ We write:We write:

SSHAPHAP | |≈≈  EXPEXP  GG  
i.e., 

Comp(SOKB ∪ EXP) ∪ HAP ∪ CET╞══  G



Operational SemanticsOperational Semantics

■ Based on IFF
■ Data structure

T = <R,CS,PSIC,EXP,HAP,FULF,VIOL>
Where
■ R: Conjunction of literals
■ CS: CLP-Constraint Store
■ PSIC: Partially solved ICs 
■ EXP: (Pending) Expectations
■ FULF: Fulfilled expectations
■ VIOL: Violated Expectations



DerivationDerivation

■ Initial Node

T0 = <{G}, ∅,ICs ,∅ , SHAPi ,∅, ∅ >
(may start with a non-empty history HAPi)

■ Derivation T0  → T1  …  → → Tn (quiescence)
■ Successful derivation:

– Final node: Tn=<∅,CS,PSIC,EXP,HAPf,FULF,∅ >

– written SHAPi |~EXP ∪  FULF 
HAPf G



TransitionsTransitions

■ IFF-Like (extended)
■ Dynamically growing history
■ Fulfillment, violation
■ Consistency
■ CLP



SoundnessSoundness

■ Soundness. Given a society instance SHAPi, if

SHAPi |~EXP ∪  FULF 
HAPf G 

with expectation answer (EXP ∪ FULF,σ) then

SHAPf |≈(EXP ∪  FULF)σ Gσ
■ Proved under 

– allowedness conditions

– without abducibles quantified ∀     

– Extendable to quantified ∀ (sketched, see lemma to abducibles 
quantified ∀)



SC-IFF
SC-IFF without  abducibles

Soundness: scheme of proofSoundness: scheme of proof

■ Based on Soundness of 
IFF
– In both cases of open and 

closed history SC-IFF
•without dynamic H
•without  abducibles

IFF



Prolog/CHR-based Prolog/CHR-based 
Implementation of SCIFFImplementation of SCIFF

■ (Attributed) Variables
– Quantification (exist, forall) in attributes
– Ad-hoc constraint solver for unification

■ Implementation of Data Structures
– R as the Prolog resolvent
– CS as CLP stores (CLPFD, CLPB)
– PSIC,EXP,HAP,FULF,VIOL implemented as CHR constraints

■ Implementation of Transitions
– Most (propagation, fulfillment/violation, consistency…) as CHR rules
– CLP: delegated to the solvers


