Verifying Protocol Conformance on the fly by using SC-IFF
proof procedure

Paola Mello, Federico Chesani

Universita di Bologna
14 Luglio 2004

Open Societies of
agents/computees

Open societies

— agents/computees are heterogeneous

— no assumptions on the behaviour of agents

— observation of external behaviour of agents (interactions)
Interactions

— agent communication language

— Interaction protocols

— Issues: formal specification, verification of compliance

Aims of the Society model

Use of a declarative and CL-based representation for the
specification of ACL/protocols

Uniform computational model to understand different
aspects of interaction in an open and global
environment

Support goal-directed behaviour of societies
Corresponding operational model
Possibility to verify interactions, and prove properties

Compliance Verification

Social Infrastructure

Computees

Protocols |
’ |

Y

| .
> Fulfillment
i Reasoning \/:/

Behaviour

8 > and verification \:\‘ Violation
% \ |\ module J
.~ - -

I N S S S S -y

Social infrastructure

Social Infrastructure

{ Protocols } :
-

‘ Expectations VES Fulfillment

{ReasonlngJ—j Verify |

Behaviour Compliance |NO,

V|olat|on
2o
N _7

Knowledge Representation
<SOKB, SEKB, IC,, Goals>

SOKB: society knowledge base (roles and rules)
— LP clauses with expectations

SEKB: consists of

— History (HAP): set of Happened events that are “socially relevant” (e.qg.
communicative acts). Ground facts of the kind: H(Event [,Time]).

— EXP: (positive or negative) expectations on the correct (social) behaviour
of members: [-] E(Event [, Time]) / [-] EN(Event [, Time])

IC,: protocol specification by means of integrity
constraints (social semantics)

Goals: Society can be goal-directed
— LP Goals

Social infrastructure

Social Infrastructure

/ - “\ Fulfilment
Expectations YES Ly

/ Reasoning] Verify |
Compliance [[NOI Violation

> §
y
N o e e e men mm e e e e e e e mm e e e e e e -

(1) on-the fly verification of compliance
to protocols

Behaviour

’_____

Social Integrity Constraints
(ICs)

Example of Social Integrity Constraint
Society where agents can exchange resources:

If | make you an offer, you are expected to answer to me by either
accepting or refusing before a deadline d

H(tell(Me,You,offer(ltem,Price),T) -
E(tell(You,Me,accept(ltem,Price),T’), T'<=T+d Vv
E(tell(You,Me,refuse(ltem,Price), T'), T'<=T+d

If you accept my offer, you are expected to not refuse it later

H(tell(You,Me,accept(ltem,Price), T) -

EN(tell(You,Me,refuse(ltem,Price), Tr), Tr>=T

Example (fulfilment)

yves thomas

g ; H(tell(yves,thomas,offer(scooter,10%$),1) g 2

E(tell(thomas,yves,accept(scooter,10$),T"), T' < 7

V E(tell(thomas,yves,retuse(scooter,10$),1°), 1" < /

H(tell(thomas,yves,accept(scooter,10%$),5)

fulfillment!

Example (violation)

yves thomas

8 H(tell(yves,thomas,offer(scooter,10%$),1) 8

E(tell(thomas,yves,accept(scooter,10$),T"), T' < 7
V E(tell(thomas,yves,refuse(scooter,10$),T’), T' < 7

violation!

Example (violation)

yves thomas

g ; H(tell(yves,thomas,offer(scooter,10%$),1) g 2

H(tell(thomas,yves,accept(scooter,10%$),5)

H(tell(thomas,yves,accept(ltem,Price), T)
EN(tell(thomas,yves,refuse(ltem,Price), Tr), Tr>=T

H(tell(thomas,yves,refuse(scooter,10%$),8)

violation!

Society Instance as Abductive
Logic Program

® Instance of a Society (S,,;): ALP <P,Ab,IC> with

— P =SOKB O HAP
— Ab ={E, EN, = E, - EN}
— IC = IC;

Consistency:

— IC,-Consistency

— E-Consistency
— =-Consistency
— Fulfillment

Consistency

Given a society and a set HAP of events...

3.

a set of expectations EXP is IC_-consistent iff
SOKB O HAP O EXP IC
a set of expectations EXP is E-consistent iff
{ E(P). EN(p) } £ EXP
a set of expectations EXP is —-consistent iff
{E(P). ~E(p) } € EXP
{ EN(p), "EN(p) } ¢ EXP
a (IC,,E,~) consistent EXP is fulfilled iff /1L
HAP O EXP {E(p) » H(p)} U {EN(p) » = H(p)} F

iIf no consistent set of expectations fulfilled exists, HAP produces a
violation in the society

S

Society Constraint Proof Procedure
(wrt IFF)

Called SCIFF (Society Constraint IFF)
Extends IFF.

New features:

Accepts new events as they happen (incremental, dynamic)

Generates the expectations E, not E, EN, not EN on the basis of
behaviour of the members of a society and of IC..

Verifies the correspondence between the happened events and
the expected events (fulfillment)

Identifies (as soon as possible) the situation where there is
violation and/or inconsistency

The abduced atoms may have variables quantified [J and
variables quantified [

Properties

" General properties (of the framework):
— well-definedness of programs/ICs

— termination of conformance checking (link to structural properties of
ICs)

* Properties of interaction

— mechanism viewpoint:
« “general” properties (fairness, termination, ...)

« “specific” (some proposition/formula holds): can be defined by way of ICs
2?7

— agent viewpoint: conformance to protocols

General Society Properties

® Termination of conformance checking

— aim: to identify classes of Societies (SOKB, ICs, G) for which, under suitable
syntactic conditions, any execution of SCIFF terminates, given each possible
history

— classes must be expressive enough to represent certain significant protocols,
while guaranteeing termination of SCIFF.

Well-definedness of Societies

— aim: given a society (SOKB, ICs, G), to guarantee that, under certain hypotheses,
this society will be well-defined, i.e., among its possible (closed) instances there
exists at least one for which goal G is achieved.

Idea: use background from LP, e.qg.:
— call-consistent normal LP => 3 at least one (total) stable model
— stratified normal LP => 3 exactly one (total) stable model
— acyclic ALP and query => termination

Examples

Not well-defined.:
« Goal: g.
« SOKB: g <- E(p), E(q).
 ICS: E(p) -> EN(Qq).

Or:
« Goal: true.
* ICS: H(p) -> EN(p).
Not H(p) -> E(p).

Not terminating:
— ICS: E(p(X)) -> E(p(f(X))).

Agent Compliance (wrt ICs),
[Alberti et alii ENTCS2003]

Negative compliance: A group of agents is negatively compliant
to a set of social integrity constraints iff its members never
produce a social event which is expected not to happen;

Positive compliance: A group of agents is positively compliant
to a set of social integrity constraints iff its members never fail to
produce social events which are expected to happen;

Strong compliance: A group of agents is strongly compliant to a
set of social integrity constraints iff it is both negatively and
positively compliant.

Compliance is a property which can be verified on-the-fly (in
open environments)

Agent Conformance (wrt Protocol)
[Endriss et alii, AAMASO03]

® Weak conformance An agent is weakly conformant to a protocol P
Iff it never utters any illegal dialogue move (wrt. P)(negative?).

® Exhaustive conformance An agent is exhaustively conformant to a
protocol P iff it is weakly conformant to P and it will utter at least one
legal output move for any legal input of P it receives (strong?).

® An additional notion of conformance (robust conformance) is related
to the behaviour of computees in the event of illegal incoming
messages (FIPA not-understood).

Degrees of verification

time of
verification

05
o = =S =
sE38
324
£y - A
. ~ Yo
..... ‘ . O \xmvo
$
~ ~ “
© e !
N = o
| Om\mv “
..... ‘ . O 2o mm\.\O.\ “
oﬂox “0y
I
) = !
..... ‘ ‘ O Q\.\ |
Ws. 7
\V@Q Or.v “
—~ I
fe o _
..... . . O m\mv\ “
s,)
OQ I
I
—~ —~ !
© QO I
— ~ @Q |
_____ O ® O Q@@ g |
\Y@@ O.\N\O I
% !
|||||||||||||| I
N ™
~ ~ m\
..... . . O 4 O\\@m«\
\ B O\c\o\/mv.\o.\m\\
o,
< AJ O N\
o o
m\O\&\V Q«Q Q@ Q«\x
el .&J@
ks 2

Proving specific properties

* Related work: model checking.
— Prove static properties on mechanism

— E.g. Needham-Schroeder: protocol is prone to man-in-the-middle
breaks

— Need full knowledge about the mechanism

" Using SCIFF (open questions):
— how to use model checking techniques in an open environment
(partial information)?

— how to extend SCIFF to achieve results comparable with those
achieved by model checking techniques? (possible?)

— Idea: can SCIFF be used to generate compliant histories of
events? (which formalism to synthesize compliant histories?)

Collaboration?
“ Torino: Logic-based protocols & DyLOG

— mentalistic approach (agents) vs. social approach (Society
Infrastructure)

— conformance:

e investigate on the relationship between the different notions
of conformance/compliance

— translation AUML-> DyLog:

* It would be interesting to investigate if the approach used for
the translation AUML ->DyLog could be extended for
translating AUML specification into ICS

— from the implementation point of view: integration of
DyLog and SOCS-SI

Ambito Applicativo

Analizzare e validare i modelli e i linguaggi definiti in
diversi scenari applicativi.

Realizzazione di interazioni tra agenti basate su
dialoghi, con particolare attenzione alla negoziazione
per I’allocazione di risorse

Esempio di test in SOCS: aste combinatorie, Net-Bill

Sistemi di supporto alla diagnosi medica e di verifica di
protocolli in campo medico (linee guida).

Demo!

A simplified auction scenario will be presented.
Auction protocol is defined thorugh ICs. Amongst them:

(1) If acomputee makes a bid, the auctioneer is expected to answer by
either saying win or lose before a deadline d

H(tell(Bidder,Auctioneer,bid(ltem,Price),T) -
E(tell(Auctioneer,Bidder,win(ltem,Price), T), T'<T+d Vv
E(tell(Auctioneer,Bidder,lose(Iltem,Price), T'), T' <T+d

(2) Once the auctioneer awards a bidder (“win”), the auctioneer is expected
not to acknowledge the same bidder with “lose”

H(tell(Auctioneer,Bidder,win(ltem,Price), T) -
EN(tell(Auctioneer,Bidder,lose(ltem,Price), Tr), Tr=T

Demo!

In the first run, a “compliance” history is shown.

Agent f open an auction in order to get ataxi to a
station

Three taxi (taxil, taxi2, taxi3) make a bid each.

f notifies taxil “win”, and to taxi2 and taxi3 it
notifies “lose”

Demo!

“ Inthe second run, a “wrong” interaction is shown.

Same scenario as before, but this time the
auctioneer f does not notify taxi2 and taxi3 “lose”

As soon as the history is declared “closed” (no
more events can happen anymore), SOCS-SI
detects the violation due to the ICs:

H(tell(Bidder,Auctioneer,bid(Iltem,Price),T) -
E(tell(Auctioneer,Bidder,win(ltem,Price),T’), T'<T+d
V
E(tell(Auctioneer,Bidder,lose(ltem,Price), T'), T' <T+d

Goal Achievability

Society can be goal-directed

“ Given an instance of a society S,,,, with (open/closed)
history, a goal G is achievable in S, iff there exists an

(open/closed) consistent fulfilled set of expectations EXP
s.t.:

SOKB 0O EXP O HAP |= G

“ We write:
Sire [F exp G
l.e.,

Comp(SOKB [0 EXP) 0 HAP [0 CET k= G

Operational Semantics

“ Based on IFF
® Data structure
T =<R,CS,PSIC,EXP,HAP,FULF,VIOL>
Where
R: Conjunction of literals
® CS: CLP-Constraint Store
“ PSIC: Partially solved IC,

EXP: (Pending) Expectations
FULF: Fulfilled expectations
® VIOL: Violated Expectations

Derivation

® Initial Node

TO = <{G}’ |:|1ICS 1|:| ’SHAPi ,D, |:| >
(may start with a non-empty history HAP,)
“ Derivation T,» T, » ...» T, (quiescence)

® Successful derivation:

— Final node: T,=<0,CS,PSIC,EXP,HAP,,FULF,[J >

: - HAP
— Written Sypi [~exp 0 FuLr G

Transitions

IFF-Like (extended)
Dynamically growing history
Fulfillment, violation
Consistency

CLP

Soundness

® Soundness. Given a society instance S, If

~ HAPf
SHAPi | EXP U FULF G

with expectation answer (EXP 0 FULF,o) then

Stiaps |N(EXP 0 FULF)o Go

“* Proved under

— allowedness conditions
— without abducibles quantified [

— Extendable to quantified [J (sketched, see lemma to abducibles
quantified)

Soundness: scheme of proof

" Based on Soundness of SC_ I F F

IFF

SC-IFF without abducibles
— In both cases of open and
closed history SC-1EE

*without dynamic H
swithout abducibles

IFF

Prolog/CHR-based
Implementation of SCIFF

" (Attributed) Variables
— Quantification (exist, forall) in attributes
— Ad-hoc constraint solver for unification

Implementation of Data Structures

— R as the Prolog resolvent
— CS as CLP stores (CLPFD, CLPB)
— PSIC,EXP,HAP,FULF,VIOL implemented as CHR constraints

Implementation of Transitions
— Most (propagation, fulfillment/violation, consistency...) as CHR rules
— CLP: delegated to the solvers

