
Specifying and Verifying Systems of Communicating
Agents in a Temporal Action Logic

Laura Giordano1, Alberto Martelli2, Camilla Schwind3

1Dipartimento di Informatica, Università del Piemonte Orientale, Alessandria
2Dipartimento di Informatica, Università di Torino, Torino

3MAP, CNRS, Marseille, France

COFIN 14-07-04 – p.1/33

Summary

• We present a logical framework for specifying and verifying
systems of communicating agents.

COFIN 14-07-04 – p.2/33

Summary

• We present a logical framework for specifying and verifying
systems of communicating agents.

• The framework is based on a Dynamic Linear Time
Temporal Logic (DLTL) and provides a simple formalization
of the communicative actions in terms of their effects and
preconditions.

COFIN 14-07-04 – p.2/33

Summary

• We present a logical framework for specifying and verifying
systems of communicating agents.

• The framework is based on a Dynamic Linear Time
Temporal Logic (DLTL) and provides a simple formalization
of the communicative actions in terms of their effects and
preconditions.

• We show how to model interaction protocols based on a
social approach: communication can be described in terms
of changes in the social state, and protocols in terms of
creation, manipulation and satisfaction of commitments
among agents.

COFIN 14-07-04 – p.2/33

Specification

• The description of the interaction protocol and of
communicative actions is given in a temporal action theory.

• Communicative actions are formalized in terms of effects
and preconditions.

• Interaction protocols are specified with temporal constraints
representing permissions and commitments.

• Agent programs, when known, can be formulated in DLTL
as regular programs.

COFIN 14-07-04 – p.3/33

Verification

• Several kinds of verification problems (including the problem
of compliance of agents to the protocol) can be formalized
either as validity or as satisfiability problems in the temporal
logic.

• Such verification tasks can be automated by translating
DLTL formulas into Büchi automata, and checking for the
emptiness of the language accepted by the automaton.

• We have developed a tableau-based algorithm [TIME04] for
constructing a Büchi automaton from a DLTL formula "on
the fly".

• The number of states of the automaton is, in the worst case,
exponential in the size of the input formula. Check for
emptiness can be done in linear time.

COFIN 14-07-04 – p.4/33

The logical framework

• A theory for reasoning about communicative actions in a
multiagent system based on Dynamic Linear Time Temporal
Logic (DLTL), an extension of LTL (the propositional linear
time temporal logic).

• DLTL extends LTL by strengthening the until operator by
indexing it with the regular programs of dynamic logic. It is,
essentially, a dynamic logic equipped with a linear time
semantics.

• A Product Version of Dynamic Linear Time Temporal Logic
(DLTL⊗), allows to model multiagent systems, by
decorating formulas with the names of sequential agents.
Synchronization is achieved by means of shared actions.

COFIN 14-07-04 – p.5/33

DLTL (Henriksen, Thiagarajan)

Σ be a finite non-empty alphabet of actions .
Σω the set of infinite words on Σ.

Prg(Σ) the set of programs (regular expressions)

Prg(Σ) ::= a | π1 + π2 | π1;π2 | π∗, where a ∈ Σ

[[π]] represents the set of executions of π

The set of formulas of DLTL(Σ):
DLTL(Σ) ::= p | ¬α | α ∨ β | αUπβ

where p ∈ P are atomic propositions

COFIN 14-07-04 – p.6/33

DLTL

A model of DLTL(Σ) is a pair M = (σ, V) where σ ∈ Σω and
V : prf(σ) → 2P is a valuation function.

Given a model M = (σ, V), and a prefix τ of σ, we can define
the satisfiability of a formula at τ in M . In particular:

M, τ |= αUπβ iff there exists τ ′ ∈ [[π]] such that

• ττ ′ ∈ prf(σ)

• M, ττ ′ |= β

• M, ττ ′′ |= α for every prefix τ ′′ of τ ′

COFIN 14-07-04 – p.7/33

DLTL

We can define derived modalities

• 〈π〉α ≡ >Uπα

• [π]α ≡ ¬〈π〉¬α

• ©α ≡
∨

a∈Σ
〈a〉α (next)

• 3α ≡ >UΣ
∗

α

• 2α ≡ ¬3¬α

COFIN 14-07-04 – p.8/33

DLTL
⊗ (Henriksen, Thiagarajan)

• There are n agents, each with an alphabet Σi of actions.

• The alphabets are not disjoint. Actions shared by agents
represent synchronized actions.

• The until operator is indexed with the name of an agent: Uπ
i

• Modal subformulas can only deal with one agent.

• In a model M = (σ, V), σ is an infinite sequence of actions
of all agents. Formulas concerning agent i are evaluated
locally, i.e. by projecting σ on the actions of agent i.

COFIN 14-07-04 – p.9/33

Proof of DLTL formulas

• The satisfiability problem for DLTL can be solved in
deterministic exponential time, as for LTL, by constructing
for each formula α ∈ DLTL(Σ) a Büchi automaton Bα such
that the language of ω-words accepted by Bα is non-empty
if and only if α is satisfiable.

• There is a one to one correspondence between models of
the formula (infinite sequences of actions) and infinite words
accepted by Bα.

• The validity of a formula α can be verified by constructing
the Büchi automaton B¬α for ¬α: if the language accepted
by B¬α is empty, then α is valid, whereas any infinite word
accepted by B¬α provides a counterexample to the validity
of α.

COFIN 14-07-04 – p.10/33

Automaton construction

A Büchi automaton over Σ is a tuple B = (Q,→, Qin, F) where:

• Q is a finite nonempty set of states;
• →⊆ Q × Σ × Q is a transition relation;
• Qin ⊆ Q is the set of initial states;
• F ⊆ Q is a set of accepting states.

Let σ ∈ Σω. Then a run of B over σ is a map ρ : prf(σ) → Q

such that:

• ρ(ε) ∈ Qin

• ρ(τ)
a
→ ρ(τa) for each τa ∈ prf(σ)

A run is accepting iff if contains infinitely many times an
accepting state.
L(B) is the language of ω-words accepted by B.

COFIN 14-07-04 – p.11/33

Action theory (AI*IA 2001)

An action theory can be given by defining
Action laws

2(α → [a]β)

Precondition laws

2(α → [a]⊥)

Causal laws

2([a]α → [a]β)

Persistency is modelled by a completion construction (Reiter).

COFIN 14-07-04 – p.12/33

Interaction protocols

We adopt a social approach, where communicative actions
affect the "social state" of the system, rather than the internal
states of the agents. The social state records the social facts,
like the permissions and the commitments of the agents, which
are created and modified in the interactions among them.

This protocol does not require the rigid specification of all the
allowed action sequences, e.g. by means of finite state
diagrams.

The action theory can provide a high level specification of the
protocol.

COFIN 14-07-04 – p.13/33

Specifying protocols

In our action theory the effects of communicative actions will be
modeled by action laws.

Permissions, which determine when an action can be taken by
each agent, can be modeled by precondition laws.

Commitment policies, which rule the dynamic of commitments,
can be described by causal laws which establish the causal
dependencies among fluents.

The specification of a protocol can be further constrained
through the addition of suitable temporal formulas.

The agents’ programs can be modeled by making use of
complex actions (regular programs).

COFIN 14-07-04 – p.14/33

Contract net

The Contract Net protocol begins with an agent (the manager)
broadcasting a task announcement (call for proposals) to other
agents viewed as potential contractors (the participants). Each
participant can reply by sending either a proposal or a refusal.
The manager must send an accept or reject message to all
those who sent a proposal. When a contractor receives an
acceptance it is committed to perform the task.

COFIN 14-07-04 – p.15/33

Contract net

We assume to have only two agents : M , the manager, and P ,
the participant.

Actions sent by M : cfp(T), accept, reject

Actions sent by P : refuse, propose

Fluents : task, replied, proposal, acc_rej

task is a functional fluent (task = T)

COFIN 14-07-04 – p.16/33

Commitments

Commitments are special fluents

• base-level commitments : C(ag1, ag2, α) (agent ag1 is
committed to agent ag2 to bring about α)

• conditional commitments : CC(ag1, ag2, β, α) (agent ag1 is
committed to agent ag2 to bring about α, if the condition β is
brought about)

In the Contract Net we have the commitments:

C(P, M, replied) and C(M, P, acc_rej)

and conditional commitments

CC(P, M, task 6= nil, replied) and
CC(M, P, propose, acc_rej).

COFIN 14-07-04 – p.17/33

Rules for commitments

We introduce some reasoning rules for commitments:

2(©α → ©¬C(i, j, α))
2(©α → ©¬CC(i, j, β, α))
2((CC(i, j, β, α) ∧©β) →

©(C(i, j, α) ∧ ¬CC(i, j, β, α)))

A commitment (or a conditional commitment) to bring about α is
cancelled when α holds, and a conditional commitment
CC(i, j, β, α) becomes a base-level commitment C(i, j, α) when
β has been brought about.

COFIN 14-07-04 – p.18/33

Action laws

2[cfp(T)]task = T

2[cfp(T)]CC(M, P, proposal, acc_rej)
2[accept]acc_rej

2[reject]acc_rej

2[refuse]replied

2[propose](replied ∧ proposal)

COFIN 14-07-04 – p.19/33

Permissions

The permissions to execute communicative actions are
represent by precondition laws.

2(¬proposal ∨ acc_rej → [accept]⊥)
2(¬proposal ∨ acc_rej → [reject]⊥)
2(task = nil ∨ replied → [refuse]⊥)
2(task = nil ∨ replied → [propose]⊥)
2(task 6= nil → [cfp(T)]⊥).

We will call Permi (permissions of agent i) the set of all the
precondition laws of the protocol pertaining to the actions of
which agent i is the sender.

COFIN 14-07-04 – p.20/33

Initial state and commitments

The initial state of the protocol:

{task = nil,¬replied,¬proposal,

CC(P, M, task 6= nil, replied), C(M, P, task 6= nil)}

We can express the condition that the commitment C(i, j, α) has
been fulfilled by the following constraint:

2(C(i, j, α) → 3α)

We will call Comi the set of constraints of this kind for all
commitments of agent i. Comi states that agent i will fulfill all
the commitments of which he is the debtor.

COFIN 14-07-04 – p.21/33

Specifying a protocol

The protocol can be described for each agent as:

• Action and causal laws Π (suitably completed to cope with
persistency Comp(Π))

• Initial state Init

• Permissions Permi for each agent i (precondition laws)
• Commitment conditions Comi for each agent i

COFIN 14-07-04 – p.22/33

Domain description

A domain description D, can be defined by the formula:

D = (Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi))

The runs of the system according the protocol are the linear
models of Comp(D). Observe that in these protocol runs all
permissions and commitments have been fulfilled.

Note also that all sequences of actions accepted by the Büchi
automaton obtained from the above formula represent all correct
executions of the given protocol.

COFIN 14-07-04 – p.23/33

Verification

Given an execution history describing the interactions of the
agents, we want to verify the compliance of that execution with
the protocol.
This verification is carried out at runtime.
We are given a history τ = a1, . . . , an of the communicative
actions executed by the agents, and we want to verify that the
history τ is the prefix of a run of the protocol, that is, it respects
the permissions and commitments of the protocol.
This problem can be formalized as satisfiability of the formula

(Comp(Π) ∧ Init ∧
∧

i

(Permi ∧ Comi))∧ < a1; a2; . . . ; an > >

(where i ranges on all the agents involved in the protocol).

COFIN 14-07-04 – p.24/33

Verification

Proving a property ϕ of a protocol.

This can be formulated as the validity of the formula

(Comp(Π) ∧ Init ∧
∧

i(Permi ∧ Comi)) → ϕ

Observe that, to prove the property ϕ, all the agents are
assumed to be compliant with the protocol.

COFIN 14-07-04 – p.25/33

Verification

Verify that an agent is compliant with the protocol, given the
program executed by the agent itself.
We can specify the behavior of an agent by making use of
complex actions (regular programs). The following program πP

describes the behavior of the participant:

[¬done?; ((cfp(T); eval_task; (¬ok?; refuse; exit+
ok?; propose))+

(reject; exit)+
(accept; do_task; exit))]∗; done?

The state of the agent is obtained by adding to the fluents of the
protocol, the local fluents: done, exit, and ok. The local actions
are eval_task, do_task and exit. Furthermore, done? and ok?
are test actions.

COFIN 14-07-04 – p.26/33

Domain description

The program of the participant can be specified by a domain
description ProgP = (ΠP , CP), where ΠP is a set of action laws
describing the effects of the private actions of the contractor, for
instance:

2[exit]done

2(task = t1 → [eval_task]ok)
2(task = t2 → [eval_task]¬ok)

and, CP = {〈πP 〉>,¬done,¬ok} contains the constraints on the
initial values of fluents (¬done,¬ok) as well as the formula 〈πP 〉>
stating that the program of the participant is executable in the
initial state.

COFIN 14-07-04 – p.27/33

Compliance verification

The property that the participant is compliant with the protocol,
i.e. that all executions of program πP satisfy the specification of
the protocol, cannot be proved by considering only the program
πP .
The correctness of the property depends on the behavior of the
manager. For instance, if the manager begins with an accept

action, the participant will execute the sequence of actions
accept; do_task; exit and stop, which is not a correct execution of
the protocol.
We have to take into account also the behavior of the manager.
Since we don’t know its internal behavior, we will assume that
the manager respects its public behavior, i.e. that it respects its
permissions and commitments in the protocol specification.

COFIN 14-07-04 – p.28/33

Compliance verification

The verification that the participant is compliant with the protocol
can be formalized as a validity check. Let D = (Π, C) be the
domain description describing the protocol, as defined above.
The formula

(Comp(Π)∧Init∧PermM∧ComM∧Comp(ΠP)∧CP) → (PermP∧ComP)

is valid if in all the behaviors of the system, in which the
participant executes its program πP and the manager (whose
internal program is unknown) respects the protocol specification
(in particular, its permissions and commitments), the
permissions and commitment of the participant are also
satisfied.

COFIN 14-07-04 – p.29/33

Contract Net with N participants

The formulation of the protocol can be extended by introducing a
fluent replied(i), . . . and an action refuse(i), . . . for each
participant i. We assume action cfp(T) to be shared by all
agents (broadcast by the manager).

The precondition laws for accept(i) and reject(i) must be
modified so that these actions will be executed only after all
participants have replied to the manager, i.e.:

2((¬proposal(i) ∨ acc_rej(i) ∨
∨

j=1,N ¬replied(j)) →

[accept(i)]⊥)

and the same for reject(i).

COFIN 14-07-04 – p.30/33

Rigid protocol

Contract Net is a rigid protocol, where the behavior of the agents
involved is defined step by step. It can be represented by an
AUML diagram or finite state automaton.
We can represent it in DLTL as a regular program (automaton)
instead of using permissions and commitments:

cfp(M, all); (refuse(i, M)+
(propose(i, M); (reject(M, i)+

accept(M, i); inform(i, M, Done(i, task)))))

The specification of the protocol must also give the meaning of
the communicative actions used in the protocol (domain
description), by describing their effects on the social state and by
defining the condition under which they are executable in a state.

COFIN 14-07-04 – p.31/33

Model checking

In principle, with DLTL we do not need to use model checking,
because programs and domain descriptions can be represented
in the logic itself. However this can be rather inefficient.
Given a domain description D and a property ϕ to be proved, we
can apply a model checking approach as follows:

• derive from D a Kripke structure (the model), which directly
corresponds to a Büchi automaton where all the states are
accepting, and which describes all possible computations,

• derive from ¬ϕ a Büchi automaton,
• take the product of the two automata, and check it for

emptiness of the accepted language.

COFIN 14-07-04 – p.32/33

To summarize

Our approach provides a unified framework for describing
different aspects of multi-agent systems using DLTL.

• Programs are expressed as regular expressions,
• (communicative) actions can be specified by means of

action and precondition laws,
• properties of social facts can be specified by means of

causal laws
• commitments and temporal properties can be expressed by

means of the until operator.

COFIN 14-07-04 – p.33/33

	�f Summary
	�f Specification
	�f Verification
	�f The logical framework
	�f DLTL (Henriksen, Thiagarajan)
	�f DLTL
	�f DLTL
	�f $DLTL^Prod $ (Henriksen, Thiagarajan)
	�f Proof of DLTL formulas
	�f Automaton construction
	�f Action theory (AI*IA 2001)
	�f Interaction protocols
	�f Specifying protocols
	�f Contract net
	�f Contract net
	�f Commitments
	�f Rules for commitments
	�f Action laws
	�f Permissions
	�f Initial state and commitments
	�f Specifying a protocol
	�f Domain description
	�f Verification
	�f Verification
	�f Verification
	�f Domain description
	�f Compliance verification
	�f Compliance verification
	�f Contract Net with N participants
	�f Rigid protocol
	�f Model checking
	�f To summarize

