
Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 1

Cofin 2003: Logic based development and Cofin 2003: Logic based development and
verification of multi-agent systemsverification of multi-agent systems

Reasoning about logic-basedReasoning about logic-based
agent interaction protocolsagent interaction protocols

M. Baldoni, C. Baroglio, A. Martelli, V. Patti, C. Schifanella
Dipartimento di Informatica – Univ. degli Studi di Torino

C.so Svizzera, 185, I-10149 Torino (Italy)
http://www.di.unito.it/~argo

{baldoni,baroglio,mrt,patti}@di.unito.it

integration with DCaseLP in collaboration with
M. Martelli, V. Mascardi, I. Gangui

Dipartimento di Informatica e Scienze dell'Informazione
Univ. degli Studi di Genova

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 2

Protocols and MAS Engineering Protocols and MAS Engineering

➢ Protocols as connective tissue of MAS

➢ AUML, a graphical high level modeling language for
designing interactions (and protocols): abstract, does not
specify the semantics of speech acts (the ACL ontology)

➢ Protocol implementation: no automatic translation, the
abstract schema is to be completed

➢ Problem: verifying the conformance of an implementation to
the AUML protocol

➢ Problem: verifying properties of the implementation

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 3

Protocols and MAS EngineeringProtocols and MAS Engineering

➢ The development process
of an interaction protocol is
known as interaction
protocol engineering
[Huget-Koning, 2003]

➢ Many stages are identified
and described

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 4

Protocols and MAS EngineeringProtocols and MAS Engineering

➢ Analysis:
all the features, that a
protocol has to provide, are
identified

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 5

Protocols and MAS EngineeringProtocols and MAS Engineering

➢ Formal description:
a formal representation, in
AUML or some other
formalism, is given

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 6

Protocols and MAS EngineeringProtocols and MAS Engineering

➢ Validation:
the formal description is
validated w.r.t. the Analysis
requirements (eg. model
checking techniques)

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 7

Protocols and MAS EngineeringProtocols and MAS Engineering

➢ Based on the obtained
formal description, the
protocol is implemented

➢ Alternatively:
➢ A skeleton is produced in

an automatic way and then
it is completed by hand (in
particular, by adding
transitions semantics)

➢ Implementation fully “by
hand”

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 8

Protocols and MAS EngineeringProtocols and MAS Engineering

➢ To check if the operational
version of the protocol still
verifies the AUML
specification

➢ Checking the properties of
the operational version vs
the properties of the formal
description

➢ [Endriss, Maudet, Sadri,
Toni, 2003, 2004]

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 9

Protocols and MAS EngineeringProtocols and MAS Engineering

➢ Testing by execution
➢ observe the running

simulation (animation)

➢ DCaseLP

➢ Testing a priori
➢ Verify if a protocol

implementation or a
composition of protocol
implementations satisfies
some property

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 10

DcaseLP and its methodologyDcaseLP and its methodology

➢ Framework for the rapid
prototyping of multi-agent
systems

➢ It covers the engeneering
stages from the requirement
analysis to prototype
execution

➢ It integrates a set of
specification and
implementation languages
to model MAS

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 11

Integrating DyLOG in DCaseLPIntegrating DyLOG in DCaseLP

➢ A logic language could help
the designer, especially in
these stages

➢ We propose to use DyLOG
as a logic implementation
language

➢ Because conformance
verification of DyLOG
protocols w.r.t. AUML
protocols is quite natural

➢ Reasoning techniques can
be applied for a priori
testing

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 12

Integrating DyLOG in DCaseLPIntegrating DyLOG in DCaseLP

➢ DyLOG can be used as an
implementation language
but it allows to verify
properties of the written
programs

➢ It is possible to verify the
conformance in a natural
way (as we will see soon)

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 13

Representing protocols in DyLOGRepresenting protocols in DyLOG

DyLOG...
➢ A logic language for specifying individual, communicating

agents, situated in a multi agent context

➢ To perform hypothetical reasoning about the effects of
conversations on the agents mental state

➢ In order to find conversation plans which are proved to
respect protocols and to achieve some desired goal

➢ The semantic of the speech acts is specified based on
mental states (taking the point of view of the agent)

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 14

DyLOG + CKit: overviewDyLOG + CKit: overview

➢ A language to program agents, based on a modal
approach for reasoning about actions and change
➢ Primitive actions: preconditions and effects
➢ Sensing actions: interaction with the world
➢ Prolog-like procedure definitions (complex actions): the

agent's behaviour

➢ A domain description is used to refer to a set of primitive
action definitions, a set of sensing action definitions, a set
of complex action definitions, together with a set of initial
observations.

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 15

DyLOG + Ckit: overviewDyLOG + Ckit: overview

➢ speech acts and conversation policies are, as well,
represented as primitive actions, sensing actions and
procedure definitions of a DyLOG agent theory

DDDDagiagi = (= (ΠΠ, , CkitCkitagiagi,, SS00))

ΠΠCC

a set of simple
action laws to define
the agent speech
acts (inform, query,
request, …)

ΠΠCPCP

a set of procedure
axioms to specify
the agent
conversation protocols

ΠΠSgetSget

a set of sensing axioms
to represent messages from
other agents

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 16

Inclusion axioms to represent proceduresInclusion axioms to represent procedures

➢ Protocols are specified by
means of inclusion axioms

➢ Kripke models for logics
characterized by inclusion
axioms satisfy the
corrisponding inclusion
properties

[p0]⊃[p1][p2]⋯[pm]

〈 p0〉⊂〈 p1〉 〈 p2〉⋯〈 pn〉

ℜ p0
⊇ℜ p1

°ℜ p0
°⋯°ℜ pm

p1

p2
pm

p0

Inclusion axiom

Inclusion relation of
accessibility relations

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 17

Inclusion axioms to represent proceduresInclusion axioms to represent procedures

➢ Fariñas del Cerro &
Penttonen, 1988: Grammar
logics

➢ Modal logics defined on the
basis of production rules of a
grammar

➢ For simulating the behaviour
of grammas

➢ Undecidability result

➢ Baldoni, Giordano, Martelli,
1998; Baldoni, 1998 e 2000

➢ Tableaux calculus

➢ (Un)Decidability results for
subclasses and superclasses
(incestual modal logics)

[t1][t2]⋯[tn]⊃[s1][s0]⋯[sm]

t1 t 2⋯t n s1 s0⋯sm

s1

s2
sm

t1
t 2

t n

ℜt1°ℜt 2°⋯°ℜt n⊇ℜs1°ℜs0°⋯°ℜsm

p0 p1 p2

p0
〈 p0〉⊂〈 p1〉 〈 p2〉

〈 p0〉⊂

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 18

Representing protocols in DyLOGRepresenting protocols in DyLOG

➢ Agents have a subjective
perception of
communication with the
others, then an agent
represents a protocol as
one of its (conversation)
policies

➢ Policies are represented by
a set of inclusion axioms of
the form:

〈 p0〉⊂〈 p1〉 〈 p2〉⋯〈 pn〉

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 19

DyLOG + Ckit: overviewDyLOG + Ckit: overview

➢ Given a domain description, we can reason about it by
means of existential queries:

➢ p is an interaction protocol

➢ We look for a conversation, which is an instance of the protocol
described by p, after which the condition Fs holds

 ,CKit ag i , S 0├ 〈 p 〉 Fs w.a.

p

p1 pn

a1
k an

k



〈 p 〉⊂〈 p1〉 〈 p2〉⋯〈 pn〉

p p1 p2⋯ pn

Alternative definitions
of p that can be used
by backtracking

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 20

DyLOG + Ckit: overviewDyLOG + Ckit: overview

➢ We treat get-message actions as sensing actions, whose
outcome cannot be known at planning time (conditional plans
vs linear plans)

➢ Goal directed proof procedure, based on negation as failure
(deailing with persistency) [ICTCS 2003]

 ,CKit ag i , S 0├ 〈 pm〉 Fs w.a.
p

s1
' pn

'

s1
k s2

k

31∪2 ;

Sensing actions:
all answers must
lead to success

Alternative definitions
of p that can be used
by backtracking

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 21

Prototype testing: testing a prioriPrototype testing: testing a priori

➢ Verify if a protocol
implementation or a
composition of protocol
implementations satisfies
some property

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 22

DyLOG + Ckit: testing a prioriDyLOG + Ckit: testing a priori

➢ Look for a protocol that has one possible execution, after
which the service provider does not know the customer's
credit card number, and a reservation has been taken

p

s1
' pn

'

s1
k s2

k

31∪2 ;

Existential
query!!

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 23

DyLOG + Ckit: testing a prioriDyLOG + Ckit: testing a priori

➢ Is it possible to compose the interaction so to reserve a table
for dinner and to book a ticket for a movie, exploiting a
promotion?

p'

p1 pn

a1
k an

k

p' '

p1 pn

a1
k an

k



Existential
query!!

;

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 24

The conformance testingThe conformance testing

➢ To check if the operational
version of the protocol still
verifies the AUML
specification

➢ Checking the properties of
the operational version vs
the properties of the formal
description

➢ [Endriss, Maudet, Sadri,
Toni, 2003, 2004]

Analysis

Formal description

Validation

Protocol synthesis
or implementation

Conformance
testing

Prototype testing

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 25

Verifying the conformanceVerifying the conformance

AUML
interaction
diagram

DyLOG
implementation

To check that an agent never performs
a dialogue move that is not foreseen

by the AUML specification

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 26

The conformance testing w.r.t.The conformance testing w.r.t.
DyLOG implementationDyLOG implementation

AUML
interaction
diagram

DyLOG
implementation

Formal Language:
it represents all
possible sequences
of dialogue acts on the
basis of the AUML
sequence diagram

Sequences corresponding
to all possible dialogues
allowed by the
implementation

extract

estract

Different sets of possible dialogues
depending on the level of abstraction from
the agent mental state

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 27

Traslating AUML into linear grammarsTraslating AUML into linear grammars

➢ In [BBMPS05, submitted]
we present an algorithm to
traslate AUML 2.0 operators
message, alternative, loop,
and sub-protocol into a
formal linear grammar

➢ The language generated by
the grammar represents all
allowed interactions
between agents

L G pAUML


Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 28

Traslating AUML into linear grammarsTraslating AUML into linear grammars

➢ Proposition 1:
The set of conversation
allowed by an AUML
sequence diagram is a
regular language

➢ Proof: The algorithm
produces a right linear
grammar.

L G pAUML


Regular language

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 29

Different degree of testing conformanceDifferent degree of testing conformance

Agent Conformance

Agent Strong
Conformance

Protocol
Conformance

S 0={ : ,CKit
ag i , S 0├ 〈 pm〉Fs w.a.}

∪ S ={ : ,CKitag i , S ├ 〈 pm〉Fsw.a. }

different levels
of abstraction from

the agent mental state

p0 p1 p2

p0
〈 p0〉⊂〈 p1〉 〈 p2〉

〈 p0〉⊂

structural conformance

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 30

Agent (strong) conformanceAgent (strong) conformance

➢ Agent conformance: every conversation σ, instance of the
protocol implementation is also generated by the linear
grammar that represents the AUML diagram

➢ where
➢ It depends on the agent initial state!

S 0⊆L G pAUML


S 0={ : ,CKit
ag i , S 0├ 〈 pm〉Fs w.a. }

p

p1 pn

a1
k an

k



∈L G pAUML


Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 31

Agent strong conformanceAgent strong conformance

➢ Agent strong conformance: for every initial state S, the above
definition holds

∪ SS ⊆L G pAUML


p

p1 pn

a1
k an

k



∈L G pAUML


For every possible
initial state!

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 32

Protocol conformanceProtocol conformance

➢ However, a better notion of conformance should require that
a DyLOG implementation is conformant w.r.t. an AUML
sequence diagram independently of the semantics of speech
acts!

p

p1 pn

a1
k an

k



The derivation depends on the
tests inside the protocol
implementation, that, in turn,
they depends on the
current agent's mental state

The derivation depends on the
preconditions of speech acts
that are tested on the current
agent's mental state

The derivation depends on the
semantics of speech acts

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 33

Protocol conformanceProtocol conformance

➢ It is necessary to provide a sort of “structural” notion of
conformance

➢ The idea is to define a context-free grammar from the
DyLOG implementation, exploiting the natural interpretation
of inclusion axioms as rewriting rules

〈 p0〉⊂〈 p1〉 〈 p2〉⋯〈 pn〉

p0 p1 p2⋯ pn

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 34

Protocol conformanceProtocol conformance

➢ The language generated by the context-free grammar G
pDyLOG

so defined represents all possible sequences of speech acts
allowed by the DyLOG implementation independently of the
evolution of the agent mental state

➢ Protocol conformance: all possible sequences of speech acts
allowed by the DyLOG implementation is also generated by
the grammar that represents the AUML diagram

L G pDyLOG
⊆L G pAUML



Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 35

Different degree of testing conformanceDifferent degree of testing conformance

Agent Conformance

Agent Strong
Conformance

Protocol
Conformance

S 0={ : ,CKit
ag i , S 0├ 〈 pm〉Fs w.a.}

∪ S ={ : ,CKitag i , S ├ 〈 pm〉Fsw.a. }

different levels
of abstraction from

the agent mental state

p0 p1 p2

p0
〈 p0〉⊂〈 p1〉 〈 p2〉

〈 p0〉⊂

IMPLIES

IMPLIES

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 36

Verifying the conformanceVerifying the conformance

➢ Proposition 2: Protocol conformance is decidable (it can be
reduced to the decideble problem of emptiness of context-
free languages)

➢ Proposition 3: The complexity for testing the protocol
conformance is O(n4) time and O(n3) space

Reasoning about logic-based agent interaction protocolsAlessandria, 14/7/2004 37

Conclusions and future worksConclusions and future works

➢ Methodology for producing skeletons that respect the
protocol conformance.

➢ The work is in progress, future steps:
➢ Turning the whole AUML 2.0 in linear grammars or finite

automata
➢ Integrating DyLOG in DCaseLP

➢ Implementation of DyLOG+CKit (now only DyLOG in Sicstus
Prolog)

➢ Implementation of a graphical tool for programming in DyLOG
and producing the DyLOG skeleton directly from an AUML
interaction diagram

➢ DyLOG represented by means of OWL

